Problems

(1) Use symmetry to evaluate the double integrals.

(a) \[\int_{\mathcal{R}} \sin x \, dA, \quad \mathcal{R} = [0, 2\pi] \times [0, 2\pi]. \]

(b) \[\int_{\mathcal{R}} x^3 \, dA, \quad \mathcal{R} = [-4, 4] \times [0, 5]. \]

(2) Evaluate the iterated integrals.

(a) \[\int_{-1}^{1} \int_{0}^{\pi} x^2 \sin y \, dy \, dx \]

(b) \[\int_{0}^{1} \int_{0}^{2} (x + 4y^3) \, dx \, dy \]

(3) Evaluate the following integrals using Fubini’s theorem.

(a) \[\int_{0}^{1} \int_{0}^{1} y \sqrt{1 + xy} \, dy \, dx \]

(b) \[\int_{0}^{1} \int_{0}^{1} xe^{xy} \, dx \, dy \]

(4) Compute the double integral over the domain \(\mathcal{D} \) indicated

(a) \(f(x, y) = x; \ 0 \leq x \leq 1, \ 1 \leq y \leq e^{x^2}. \)

(b) \(f(x, y) = \sin x; \ \text{bounded by } x = 0, \ x = 1, \ y = \cos x. \)

(5) Find the volume of the region bounded by \(z = 40 - 10y, \ z = 0, \ y = 0, \) and \(y = 4 - x^2. \)

(6) Find the height of the “ceiling” in Figure 30 (page 2) defined by \(z = y^2 \sin x \) for \(0 \leq x \leq \pi, \ 0 \leq y \leq 1. \)

(7) Find the triple integral of the function \(z \) over the ramp in the picture on page 2. Here, \(z \) is the height above the ground.