§8.9: Numerical Integration
§9.1: Arc Length and Surface Area
§9.4: Taylor Polynomials

Math 1910 November 02, 2017

One-Page Review

1) There are three numerical approximations to \(\int_a^b f(x) \, dx \):

(a) The midpoint rule: \(M_N = \Delta x \left(f(c_1) + \ldots + f(c_N) \right) \), \(c_j = a + \left(j + \frac{1}{2} \right) \Delta x \).

(b) The trapezoid rule: \(T_N = \frac{1}{2} \Delta x \left(y_0 + 2y_1 + 2y_2 + \ldots + 2y_{N-1} + y_N \right) \)

(c) Simpson's rule: \(S_N = \frac{1}{3} \Delta x \left(y_0 + 4y_1 + 2y_2 + \ldots + 4y_{N-3} + 2y_{N-2} + 4y_{N-1} + y_N \right) \)

2) The arc length of \(f(x) \) on the interval \([a, b] \)

3) The surface area of the surface obtained by rotating the graph of \(f(x) \) around the x-axis for \(a \leq x \leq b \)

4) The \(n \)-th Taylor Polynomial centered at \(x = a \) for the function \(f \) is

\[
T_n(x) =
\]

5) The error for the \(n \)-th Taylor Polynomial is

\[
|T_n(x) - f(x)| \leq
\]

where \(K \) is the maximum of \(|f^{(n+1)}(u)| \) over all \(u \) between \(a \) and \(x \).

6) Taylor's Theorem says that

\[
R_n(x) = T_n(x) - f(x) =
\]
PROBLEMS

(1) Find the T_4 approximation for $\int_0^4 \sqrt{x} \, dx$.

(2) State whether M_{10} underestimates or overestimates $\int_1^4 \ln(x) \, dx$.

(3) For the curve $y = \ln(\cos x)$ over the interval $[0, \pi/4]$, set up an integral to calculate:
 (a) the arc length.
 (b) the surface area when rotated around the x-axis.

(4) Approximate the arc length of the curve $y = \sin(x)$ over the interval $[0, \pi/2]$ using the midpoint approximation M_8.

(5) Find the Taylor polynomials $T_2(x)$ and $T_3(x)$ for $f(x) = \frac{1}{1+x}$ centered at $a = 1$.

(6) Find n such that $|T_n(1.3) - \sqrt{1.3}| \leq 10^{-6}$, where T_n is the Taylor polynomial for \sqrt{x} at $a = 1$.