§7.1 (Exponential Functions), §7.2 (Inverse functions), §7.3 (Logarithms) September 29, 2016

(1) \(f(x) = b^x \) is increasing if \(b > 1 \) and decreasing if \(b < 1 \).

(2) The derivative of \(f(x) = b^x \) is \(\frac{df}{dx} b^x = b^x \ln(b) \).

(3) \(\frac{d}{dx} e^x = e^x \) and \(\frac{d}{dx} e^{f(x)} = f'(x) e^{f(x)} \) and \(\frac{d}{dx} e^{kx+b} = ke^{kx+b} \).

(4) \(\int e^x \, dx = e^x + C \) and \(\int e^{kx+b} = \frac{1}{k} e^{kx+b} + C \) for constants \(k, b \).

(5) A function \(f \) with domain \(D \) is one to one if \(f(x) = c \) has at most one solution with \(x \in D \).

(6) Let \(f \) have domain \(D \) and range \(R \). The inverse \(f^{-1} \) is the unique function with domain \(R \) and range \(D \) such that \(f(f^{-1}(x)) = x \) and \(f^{-1}(f(x)) = x \).

(7) The inverse of \(f \) exists if and only if \(f \) is one-to-one on its domain.

(8) Horizontal Line Test: \(f \) is one-to-one if and only if every horizontal line intersects the graph of \(f \) only once.

(9) To find the inverse function, solve \(y = f(x) \) for \(x \) in terms of \(y \).

(10) The graph of \(f^{-1} \) is obtained by reflecting the graph of \(f \) through the line \(y = x \).

(11) If \(f \) is differentiable and one-to-one with inverse \(g \), then for \(x \) such that \(f'(g(x)) \neq 0 \),

\[
g'(x) = \frac{1}{f'(g(x))}.
\]

(12) The inverse of \(f(x) = b^x \) is \(f^{-1}(x) = \log_b(x) \).

(13) Logarithm Rules

- (a) \(\log_b(1) = 0 \) and \(\log_b(b) = 1 \).
- (b) \(\log_b(xy) = \log_b(x) + \log_b(y) \) and \(\log_b\left(\frac{x}{y}\right) = \log_b(x) - \log_b(y) \).
- (c) Change of Base: \(\frac{\log_b(x)}{\log_b(b)} = \log_b(x) \).
- (d) \(\log_b(x^n) = n \log_b(x) \).

(14) \(\frac{d}{dx} \ln(x) = \frac{1}{x} \) and \(\frac{d}{dx} \log_b(x) = \frac{1}{\ln(b) x} \).

(15) \(\int \frac{1}{x} \, dx = \ln|x| + C \).
SOLUTIONS
§7.1 (Exponential Functions), §7.2 (Inverse functions), §7.3 (Logarithms) September 29, 2016

(1) Calculate the derivative.
 (a) \(f(x) = 7e^{2x} + 3e^{4x} \)
 SOLUTION: \(f'(x) = 14e^{2x} + 12e^{4x} \).
 (b) \(f(x) = e^{x^2} \)
 SOLUTION: \(f'(x) = e^{x^2} \cdot 2x \).
 (c) \(f(x) = 3^x \)
 SOLUTION: \(f'(x) = 3^x \ln(3) \).
 (d) \(f(t) = \frac{1}{1-e^{-3t}} \)
 SOLUTION: \(f'(t) = -3(1-e^{-3t})^{-2}e^{-3t} \).
 (e) \(f(t) = \cos(te^{-2t}) \)
 SOLUTION: \(f'(t) = -\sin(te^{-2t})(e^{-2t} - 2te^{-2t}) \).
 (f) \(\int e^t \sin t \, dt \)
 SOLUTION: Recall that \(\frac{d}{dx} \int_a^x g(t) \, dt = g(f(x))f'(x) \, dx. \) So
 \[\frac{d}{dx} \int_4^{e^t} \sin t \, dt = \sin(e^t)e^t. \]
 (g) \(f(x) = x \ln x \)
 SOLUTION: \(f'(x) = \ln x + 1 \).
 (h) \(f(x) = \ln(x^5) \)
 SOLUTION: \(f'(x) = \frac{5}{x} \).
 (i) \(f(x) = \ln(\sin(x) + 1) \)
 SOLUTION: \(f'(x) = \frac{\cos(x)}{\sin(x) + 1} \).
(j) \(f(x) = e^{\ln(x)^2} \)

SOLUTION: \(f'(x) = e^{(\ln(x)^2)2} \frac{2 \ln(x)}{x} \)

(k) \(f(x) = \log_a(\log_b(x)) \)

SOLUTION: \(f'(x) = \frac{\ln(a)}{x \ln(b)} \)

(l) \(f(x) = 16^{\sin x} \)

SOLUTION: \(f'(x) = \ln(16) \cos x 16^{\sin x} \).

(2) Calculate the integral.

(a) \(\int (e^x + 2) \, dx \)

SOLUTION: \(e^x + 2x + C \)

(b) \(\int \frac{7}{x} \, dx \)

SOLUTION: \(7 \ln |x| + C \)

(c) \(\int e^{4x} \, dx \)

SOLUTION: \(\frac{1}{4} e^{4x} + C \)

(d) \(\int \frac{\ln x}{x} \, dx \)

SOLUTION: Set \(u = \ln x \), so \(du = \frac{1}{x} \, dx \). Therefore,

\[
\int \frac{\ln x}{x} \, dx = \int u \, du = \frac{u^2}{2} + C = \frac{1}{2} \ln(x)^2 + C.
\]

(e) \(\int \frac{1}{9x - 3} \, dx \)

SOLUTION: Let \(u = 9x - 3 \). Then \(du = 9 \, dx \) and substituting gives

\[
\int \frac{1}{9u} \, du = \frac{1}{9} \ln |u| + C = \frac{1}{9} \ln |9x - 3| + C.
\]
(f) \[\int_2^3 (e^{4t-3}) \, dt \]

SOLUTION:
\[\int_2^3 (e^{4t-3}) \, dt = e^{-3} \int_2^3 e^{4t} \, dt = e^{-3} \left(\frac{1}{4} e^{4t} \right) \bigg|_2^3 = \frac{e^{-3}}{4} \left(e^{12} - e^{8} \right) = \frac{1}{4} (e^9 - e^5) \]

(g) \[\int e^t \sqrt{e^t + 1} \, dt \]

SOLUTION: Let \(u = e^t + 1 \). Then \(du = e^t \, dt \), so the integral becomes
\[\int \sqrt{u} \, du = \frac{2}{3} u^{3/2} + C = \frac{2}{3} (e^t + 1)^{3/2} + C \]

(h) \[\int e^x \cos e^x \, dx \]

SOLUTION: Let \(u = e^x \). Then \(du = e^x \, dx \), so
\[\int e^x \cos e^x \, dx = \int \cos u = \sin u + C = \sin e^x + C. \]

(i) \[\int \tan(4x + 1) \, dx \]

SOLUTION: First, rewrite the integral as
\[\int \tan(4x + 1) \, dx = \int \frac{\sin(4x + 1)}{\cos(4x + 1)} \, dx \]
then let \(u = \cos(4x + 1) \), so \(du = -4 \sin(4x + 1) \, dx \). Hence,
\[\int \frac{\sin(4x + 1)}{\cos(4x + 1)} \, dx = -\frac{1}{4} \int \frac{1}{u} \, du = -\frac{1}{4} \ln |\cos(4x + 1)| + C \]

(j) \[\int x^3 e^x ^2 \, dx \]

SOLUTION: Let \(u = x^2 \). Then \(du = 2x \, dx \), so
\[\int x^3 e^{x^2} \, dx = \frac{1}{2} \int 3u \, du = \frac{3u}{2 \ln 3} + C = \frac{3x^2}{2 \ln 3} + C. \]
(3) For each function shown below, sketch the graph of the inverse.

\[y = x \]

\[y = \sqrt{x^2 + 6x} \text{ for } x \geq 0, \]

\[y = \frac{1}{\sqrt{x+1}}, b = \frac{1}{4} \]

(4) Calculate \(g(b) \) and \(g'(b) \), where \(g \) is the inverse of \(f \).

(a) \(f(x) = x + \cos x, b = 1 \).

\[g(1) = 0, g'(1) = 1. \]

(b) \(f(x) = 4x^3 - 2x, b = -2 \).

\[g(-2) = -1, g'(-2) = \frac{1}{11}. \]

(c) \(f(x) = \sqrt{x^2 + 6x} \text{ for } x \geq 0, b = 4 \).

\[g(4) = 2, g'(4) = \frac{4}{5}. \]

(d) \(f(x) = \frac{1}{x+1}, b = \frac{1}{4} \).

\[g(1/4) = 3, g'(1/4) = -16. \]

(5) Which of the following statements are true and which are false? If false, modify the statement to make it correct.

(a) If \(f \) is increasing, then \(f^{-1} \) is increasing.

\[\text{Solution: True.} \]
(b) If f is concave up, then f^{-1} is concave up.

SOLUTION: False. Reflecting the graph of f across the line $y = x$ to get the graph of f^{-1} means that if the graph of f is concave up, then the graph of f^{-1} is concave down.

(c) If f is odd then f^{-1} is odd.

SOLUTION: Think of what the graph of an odd function looks like. Reflecting the graph across the line $y = x$ preserves this property.

(d) Linear functions $f(x) = ax + b$ are always one-to-one.

SOLUTION: True. The inverse is $f^{-1}(x) = \frac{1}{a}(x - b)$.

(e) $f(x) = \sin(x)$ is one-to-one.

SOLUTION: False. The graph of $f(x) = \sin(x)$ fails the horizontal line test. But if we restrict the domain to $(-\pi, \pi)$, then this is true and $\arcsin(x)$ is the inverse of $\sin(x)$ on this domain.