§7.1 (Exponential Functions), §7.2 (Inverse functions), §7.3 (Logarithms) September 29, 2016

(1) \(f(x) = b^x \) is increasing if \(b > 1 \) and decreasing if \(0 < b < 1 \).

(2) The derivative of \(f(x) = b^x \) is \(\frac{d}{dx} b^x = \frac{d}{dx} e^{\ln b x} = \) \(e^{\ln b x} \cdot \ln b = b^x \ln b \).

(3) \(\frac{d}{dx} e^x = e^x \) and \(\frac{d}{dx} e^{f(x)} = e^{f(x)} \cdot f'(x) \) and \(\frac{d}{dx} e^{kx+b} = e^{kx+b} \cdot k = e^{kx+b} \cdot k \).

(4) \(\int e^x \, dx = e^x \) and \(\int e^{kx+b} \, dx = \frac{1}{k} e^{kx+b} \) for constants \(k, b \).

(5) A function \(f \) with domain \(D \) is one to one if \(f \) is increasing or decreasing on its domain.

(6) Let \(f \) have domain \(D \) and range \(R \). The inverse \(f^{-1} \) is the unique function with domain \(R \) and range \(D \) such that \(f(f^{-1}(y)) = y \) for every \(y \) in \(R \).

(7) The inverse of \(f \) exists if and only if \(f \) is one to one.

(8) Horizontal Line Test: \(f \) is one-to-one if and only if every horizontal line intersects the graph of \(f \) at most once.

(9) To find the inverse function, solve \(y = f(x) \) for \(x \) in terms of \(y \).

(10) The graph of \(f^{-1} \) is obtained by reflecting the graph of \(f \) through the line \(y = x \).

(11) If \(f \) is differentiable and one-to-one with inverse \(g \), then for \(x \) such that \(f'(g(x)) \neq 0 \),

\[
g'(x) = \frac{1}{f'(g(x))}.
\]

(12) The inverse of \(f(x) = b^x \) is \(\log_b(x) \).

(13) Logarithm Rules

\(\text{(a) } \log_b(1) = 0 \) and \(\log_b(b) = 1 \).

\(\text{(b) } \log_b(xy) = \log_b(x) + \log_b(y) \) and \(\log_b \left(\frac{x}{y} \right) = \log_b(x) - \log_b(y) \).

\(\text{(c) Change of Base: } \frac{\log_b(x)}{\log_b(a)} = \log_a(x) \).

\(\text{(d) } \log_b(x^n) = n \log_b(x) \).

(14) \(\frac{d}{dx} \ln(x) = \frac{1}{x} \) and \(\frac{d}{dx} \log_b(x) = \frac{1}{x \ln(b)} \).

(15) \(\int \frac{1}{x} \, dx = \ln(x) \).
(1) Calculate the derivative.
 (a) \(f(x) = 7e^{2x} + 3e^{4x} \)
 (b) \(f(x) = e^{x^2} \)
 (c) \(f(x) = 3^x \)
 (d) \(f(t) = \frac{1}{1 - e^{-3t}} \)
 (e) \(f(t) = \cos(te^{-2t}) \)
 (f) \(\int e^x \sin t \, dt \)
 (g) \(f(x) = x \ln x \)
 (h) \(f(x) = \ln(x^5) \)
 (i) \(f(x) = \ln(\sin(x) + 1) \)
 (j) \(f(x) = e^{\ln(x)^2} \)
 (k) \(f(x) = \log_a(\log_b(x)) \)
 (l) \(f(x) = 16^{\ln x} \)

(2) Calculate the integral.
 (a) \(\int (e^x + 2) \, dx \)
 (b) \(\int \frac{7}{x} \, dx \)
 (c) \(\int e^{4x} \, dx \)
 (d) \(\int \frac{\ln x}{x} \, dx \)
 (e) \(\int \frac{1}{9x - 3} \, dx \)
 (f) \(\int_2^3 (e^{t-3}) \, dt \)
 (g) \(\int e^t \sqrt{e^t + 1} \, dt \)
 (h) \(\int e^x \cos e^x \, dx \)
 (i) \(\int \tan(4x + 1) \, dx \)
 (j) \(\int x^3 \, dx \)
(3) For each function shown below, sketch the graph of the inverse.

(4) Calculate \(g(b) \) and \(g'(b) \), where \(g \) is the inverse of \(f \).

 (a) \(f(x) = x + \cos x, \ b = 1 \).

 (b) \(f(x) = 4x^3 - 2x, \ b = -2 \).

 (c) \(f(x) = \sqrt{x^2 + 6x} \) for \(x \geq 0, \ b = 4 \).

 (d) \(f(x) = \frac{1}{x+1}, \ b = \frac{1}{4} \).

(5) Which of the following statements are true and which are false? If false, modify the statement to make it correct.

 (a) If \(f \) is increasing, then \(f^{-1} \) is increasing.

 (b) If \(f \) is concave up, then \(f^{-1} \) is concave up.

 (c) If \(f \) is odd then \(f^{-1} \) is odd.

 (d) Linear functions \(f(x) = ax + b \) are always one-to-one.

 (e) \(f(x) = \sin(x) \) is one-to-one.