Convergence of some time inhomogeneous Markov chains via spectral techniques

Jessica Zuniga
with Laurent Saloff-Coste
Motivation

- Mironov (2002)
 (Not so) random shuffles of RC4.
 - total variation upper bound of $O(n \log n)$ for cyclic-to-random shuffle
 - lower bound of $O(n)$ for cyclic-to-random shuffle

- Mossel, Peres, Sinclair (2004)
 Shuffling by semi-random transpositions.
 - total variation upper bound of $O(n \log n)$ for any semi-random transposition shuffle
 - lower bound of $O(n \log n)$ for cyclic-to-random shuffle

- M. Ganapathy developed independently and by similar arguments an improved upper bound for semi-random transpositions. (2006)
Motivation

- **Mironov (2002)**
 - *(Not so) random shuffles of RC4.*
 - **total variation upper bound of** \(O(n \log n) \) **for cyclic-to-random shuffle**
 - **lower bound of** \(O(n) \) **for cyclic-to-random shuffle**

- **Mossel, Peres, Sinclair (2004)**
 - Shuffling by semi-random transpositions.
 - **total variation upper bound of** \(O(n \log n) \) **for any semi-random transposition shuffle**
 - **lower bound of** \(O(n \log n) \) **for cyclic-to-random shuffle**

- M. Ganapathy developed independently and by similar arguments an improved upper bound for semi-random transpositions. (2006)
Motivation

- Mironov (2002)
 (Not so) random shuffles of RC4.
 - *total variation upper bound of* $O(n \log n)$ *for cyclic-to-random shuffle*
 - *lower bound of* $O(n)$ *for cyclic-to-random shuffle*

- Mossel, Peres, Sinclair (2004)
 Shuffling by semi-random transpositions.
 - *total variation upper bound of* $O(n \log n)$ *for any semi-random transposition shuffle*
 - *lower bound of* $O(n \log n)$ *for cyclic-to-random shuffle*

- M. Ganapathy developed independently and by similar arguments an improved upper bound for semi-random transpositions. (2006)
Basic notation

V a finite set equipped with $(K_n)_{n=1}^{\infty}$ s.t.

$$K_n(x, y) \geq 0 \text{ and } \sum_y K_n(x, y) = 1.$$

The associated Markov chain: $X = (X_n)_{n=0}^{\infty}$

$$P(X_n = x | X_{n-1} = y, X_{n-2} = x_{n-2}, \ldots, X_0 = x_0)$$

$$= P(X_n = x | X_{n-1} = y)$$

$$= K_n(x, y)$$

Let μ_0 be the distribution of X_0. The distribution μ_n of X_n is

$$\mu_n(x) = \sum_{y \in V} \mu_0(x)K_{0,n}(x, y)$$

where $K_{n,n} = 1$ and for $m \geq n$.
Basic notation

\(V \) a finite set equipped with \((K_n)_{1}^{\infty} \) s.t.

\[
K_n(x, y) \geq 0 \text{ and } \sum_y K_n(x, y) = 1.
\]

The associated Markov chain: \(X = (X_n)_0^{\infty} \)

\[
P(X_n = x | X_{n-1} = y, X_{n-2} = x_{n-2}, \ldots, X_0 = x_0) = P(X_n = x | X_{n-1} = y) = K_n(x, y)
\]

Let \(\mu_0 \) be the distribution of \(X_0 \). The distribution \(\mu_n \) of \(X_n \) is

\[
\mu_n(x) = \sum_{x \in V} \mu_0(x) K_{0,n}(x, y)
\]

where \(K_{n,n} = I \) and for \(m \geq n \)

\[
K_{n,m}(x, y) = \sum_{z \in V} K_{n,m-1}(x, z) K_m(z, y).
\]

\(K_n \) are matrices: \(K_{n,m} = K_{n+1} \cdots K_m \).
Basic notation

\mathcal{V} a finite set equipped with $(K_n)_{n=1}^{\infty}$ s.t.

$$K_n(x, y) \geq 0 \text{ and } \sum_y K_n(x, y) = 1.$$

The associated Markov chain: $X = (X_n)_{n=0}^{\infty}$

$$P(X_n = x | X_{n-1} = y, X_{n-2} = x_{n-2}, \ldots, X_0 = x_0)$$

$$= P(X_n = x | X_{n-1} = y)$$

$$= K_n(x, y)$$

Let μ_0 be the distribution of X_0. The distribution μ_n of X_n is

$$\mu_n(x) = \sum_{x \in \mathcal{V}} \mu_0(x) K_{0,n}(x, y)$$

where $K_{n,n} = I$ and for $m \geq n$

$$K_{n,m}(x, y) = \sum_{z \in \mathcal{V}} K_{n,m-1}(x, z) K_{m}(z, y).$$

K_n are matrices: $K_{n,m} = K_{n+1} \ldots K_{m}$.

Basic notation

\mathcal{V} a finite set equipped with $(K_n)_{1}^{\infty}$ s.t.

$$K_n(x, y) \geq 0 \text{ and } \sum_y K_n(x, y) = 1.$$

The associated Markov chain: $X = (X_n)_{0}^{\infty}$

$$P(X_n = x | X_{n-1} = y, X_{n-2} = x_{n-2}, \ldots, X_0 = x_0) = P(X_n = x | X_{n-1} = y) = K_n(x, y).$$

Let μ_0 be the distribution of X_0. The distribution μ_n of X_n is

$$\mu_n(x) = \sum_{x \in \mathcal{V}} \mu_0(x) K_{0,n}(x, y)$$

where $K_{n,n} = I$ and for $m \geq n$

$$K_{n,m}(x, y) = \sum_{z \in \mathcal{V}} K_{n,m-1}(x, z) K_m(z, y).$$

K_n are matrices: $K_{n,m} = K_{n+1} \cdots K_m$.
Major assumption: There exists a measure π that is invariant for the sequence $(K_n)_{1}^{\infty}$, i.e.

$$\pi K_n = \pi.$$

Large class of examples: random walks on groups.

Let $V = G$ a finite group equipped with a probability measure ρ. The Markov kernel

$$K(x, y) = \rho(x^{-1}y)$$

has $\pi = 1/|G|$ as an invariant measure.
Major assumption: There exists a measure π that is invariant for the sequence $(K_n)_1^\infty$, i.e.

$$\pi K_n = \pi.$$

Large class of examples: random walks on groups.

Let $V = G$ a finite group equipped with a probability measure p. The Markov kernel

$$K(x, y) = p(x^{-1}y)$$

has $\pi = 1/|G|$ as an invariant measure.

Any sequence of probability measures $(p_i)_1^\infty$ on G gives a sequence $(K_i)_1^\infty$ of Markov kernels with invariant measure π.

\[K_n, m(x, y) = p_n \ast \cdots \ast p_m(x^{-1}y) \]
Major assumption: There exists a measure π that is invariant for the sequence $(K_n)_{1}^{\infty}$, i.e.

$$\pi K_n = \pi.$$

Large class of examples: random walks on groups.

Let $V = G$ a finite group equipped with a probability measure p. The Markov kernel

$$K(x, y) = p(x^{-1}y)$$

has $\pi = 1/|G|$ as an invariant measure.

Any sequence of probability measures $(p_i)_{1}^{\infty}$ on G gives a sequence $(K_i)_{1}^{\infty}$ of Markov kernels with invariant measure π.

$$K_{n,m}(x, y) = p_{n+1} \ast \cdots \ast p_{m}(x^{-1}y)$$

where

$$u \ast v(x) = \sum_{y \in G} u(y)v(y^{-1}x).$$
Major assumption: There exists a measure π that is invariant for the sequence $(K_n)_{n=1}^{\infty}$, i.e.

$$\pi K_n = \pi.$$

Large class of examples: random walks on groups.

Let $V = G$ a finite group equipped with a probability measure p. The Markov kernel

$$K(x, y) = p(x^{-1}y)$$

has $\pi = 1/|G|$ as an invariant measure.

Any sequence of probability measures $(p_i)_{i=1}^{\infty}$ on G gives a sequence $(K_i)_{i=1}^{\infty}$ of Markov kernels with invariant measure π.

$$K_{n,m}(x, y) = p_{n+1} \ast \cdots \ast p_m(x^{-1}y)$$

where

$$u \ast v(x) = \sum_{y \in G} u(y)v(y^{-1}x).$$
Major assumption: There exists a measure π that is invariant for the sequence $(K_n)_1^\infty$, i.e.

$$\pi K_n = \pi.$$

Large class of examples: random walks on groups.

Let $V = G$ a finite group equipped with a probability measure p. The Markov kernel

$$K(x, y) = p(x^{-1}y)$$

has $\pi = 1/|G|$ as an invariant measure.

Any sequence of probability measures $(p_i)_1^\infty$ on G gives a sequence $(K_i)_1^\infty$ of Markov kernels with invariant measure π.

$$K_{n,m}(x, y) = p_{n+1} \ast \cdots \ast p_m(x^{-1}y)$$

where

$$u \ast v(x) = \sum_{y \in G} u(y)v(y^{-1}x)$$
Definition: Let $Q = \{Q_1, \ldots, Q_n\}$ have invariant measure π. (Q, π) is ergodic if for any $(K_i)_1^\infty$ with invariant measure π and $K_i \in Q$ for infinitely many i then

$$\lim_{n \to \infty} K_{0,n}(x, z) - K_{0,n}(y, z) = 0$$

for all $x, y, z \in V$.

Remark:

- Let $Q = \{Q\}$. (Q, π) is ergodic is stronger than

$$\forall x, y, z \in V, \lim_{n \to \infty} Q^{(n)}(x, z) - Q^{(n)}(y, z) = 0.$$
Definition: Let $Q = \{Q_1, \ldots, Q_n\}$ have invariant measure π. (Q, π) is ergodic if for any $(K_i)_1^\infty$ with invariant measure π and $K_i \in Q$ for infinitely many i then

$$\lim_{n \to \infty} K_{0,n}(x, z) - K_{0,n}(y, z) = 0$$

for all $x, y, z \in V$.

Remark:

- Let $Q = \{Q\}$. (Q, π) is ergodic is stronger than

$$\forall x, y, z \in V, \lim_{n \to \infty} Q^{(n)}(x, z) - Q^{(n)}(y, z) = 0.$$
Spectral analysis

\((K, \pi)\) is a linear map on \(\ell^2(V, \pi)\).

Let \(u, v \in \ell^2(V, \pi)\).

\[
Ku = \sum_{y \in V} K(y, x)u(y)
\]
Spectral analysis

(K, π) is a linear map on $\ell^2(V, \pi)$. Let $u, v \in \ell^2(V, \pi)$.

- $Ku = \sum_{y \in V} K(\cdot, y) u(y)$
- $(u, v) = \sum_{x \in V} u(x) v(x) \pi(x)$
Spectral analysis

\((K, \pi)\) is a linear map on \(\ell^2(V, \pi)\).
Let \(u, v \in \ell^2(V, \pi)\).

- \(Ku = \sum_{y \in V} K(\cdot, y)u(y)\)
- \(\langle u, v \rangle = \sum_{x \in V} u(x)v(x)\pi(x)\)
- \(K^*\) has associated Markov kernel

\[K^*(x, y) = \pi(y)K(y, x)/\pi(x)\]
Spectral analysis

(K, π) is a linear map on $\ell^2(V, \pi)$.

Let $u, v \in \ell^2(V, \pi)$.

- $Ku = \sum_{y \in V} K(\cdot, y)u(y)$
- $\langle u, v \rangle = \sum_{x \in V} u(x)v(x)\pi(x)$

K^* has associated Markov kernel

$$K^*(x, y) = \pi(y)K(y, x)/\pi(x).$$

Distances on $\ell^2(V, \pi)$:

$$d_{TV}(\mu, \pi) = \sup_{A \in V} |\mu(A) - \pi(A)|$$

$$d_2(\mu, \pi) = \sum_{y \in V} \left|\frac{\mu(y)}{\pi(y)} - 1\right|^2 \pi(y)$$
Spectral analysis

(K, π) is a linear map on $\ell^2(V, \pi)$. Let $u, v \in \ell^2(V, \pi)$.

- $Ku = \sum_{y \in V} K(\cdot, y)u(y)$
- $\langle u, v \rangle = \sum_{x \in V} u(x)v(x)\pi(x)$
- K^* has associated Markov kernel

$$K^*(x, y) = \pi(y)K(y, x)/\pi(x).$$

Distances on $\ell^2(V, \pi)$:

$$d_{TV}(\mu, \pi) = \sup_{A \in V} |\mu(A) - \pi(A)|$$

$$d_2(\mu, \pi)^2 = \sum_y \left| \frac{\mu(y)}{\pi(y)} - 1 \right|^2 \pi(y)$$

Jensen's inequality: $2d_{TV}(\mu, \pi) \leq d_2(\mu, \pi)$.
Spectral analysis

\((K, \pi)\) is a linear map on \(\ell^2(V, \pi)\).
Let \(u, v \in \ell^2(V, \pi)\).

- \(Ku = \sum_{y \in V} K(\cdot, y)u(y)\)
- \(\langle u, v \rangle = \sum_{x \in V} u(x)v(x)\pi(x)\)
- \(K^\ast\) has associated Markov kernel

\[
K^\ast(x, y) = \pi(y)K(y, x)/\pi(x).
\]

Distances on \(\ell^2(V, \pi)\):

\[
d_{TV}(\mu, \pi) = \sup_{A \in V} |\mu(A) - \pi(A)|
\]
\[
d_2(\mu, \pi)^2 = \sum_y \left| \frac{\mu(y)}{\pi(y)} - 1 \right|^2 \pi(y)
\]

Jensen's inequality: \(2d_{TV}(\mu, \pi) \leq d_2(\mu, \pi)\)
(K, π) is a linear map on $\ell^2(V, \pi)$. Let $u, v \in \ell^2(V, \pi)$.

- $Ku = \sum_{y \in V} K(\cdot, y)u(y)$
- $\langle u, v \rangle = \sum_{x \in V} u(x)v(x)\pi(x)$
- K^* has associated Markov kernel $K^*(x, y) = \frac{\pi(y)K(y, x)}{\pi(x)}$.

Distances on $\ell^2(V, \pi)$:

$$d_{TV}(\mu, \pi) = \sup_{A \in V} |\mu(A) - \pi(A)|$$

$$d_2(\mu, \pi)^2 = \sum_y \left| \frac{\mu(y)}{\pi(y)} - 1 \right|^2 \pi(y)$$

Jensen’s inequality: $2d_{TV}(\mu, \pi) \leq d_2(\mu, \pi)$
Eigenvalues of K:

$$1 = \beta_0(K) \geq \beta_1(K) \geq \cdots \geq \beta_{|V|-1}(K) \geq -1.$$

Singular values of K on $\ell^2(V, \pi)$:

$$1 = \sigma_0(K) \geq \sigma_1(K) \geq \cdots \geq \sigma_{|V|-1}(K) \geq 0$$

where

$$\sigma_i(K) = \sqrt{\beta_i(KK^*)} = \sqrt{\beta_i(K^*K)}.$$

Theorem: Consider (K, π). Let $(\psi_i)_{i=0}^{V-1}$ be a basis of $\ell^2(V, \pi)$ such that $KK^*\psi_i = \sigma_i(K)^2\psi_i$ (assume $\psi_0 = 1$). Then

$$d_2(K(x, \cdot), \pi)^2 = \sum_{i=0}^{V-1} \sigma_i(K)^2 |\psi_i(x)|^2.$$
Eigenvalues of K:

$$1 = \beta_0(K) \geq \beta_1(K) \geq \cdots \geq \beta_{|V|-1}(K) \geq -1.$$

Singular values of K on $\ell^2(V, \pi)$:

$$1 = \sigma_0(K) \geq \sigma_1(K) \geq \cdots \geq \sigma_{|V|-1}(K) \geq 0$$

where

$$\sigma_i(K) = \sqrt{\beta_i(K^*K)} = \sqrt{\beta_i(KK^*)}.$$

Theorem: Consider (K, π). Let $(\psi_i)_{i=0}^{V|-1}$ be a basis of $\ell^2(V, \pi)$ such that $KK^*\psi_i = \sigma_i(K)^2\psi_i$ (assume $\psi_0 = 1$). Then

$$d_2(K(x, \cdot), \pi)^2 = \sum_{i=1}^{V|-1} \sigma_i(K)^2 |\psi_i(x)|^2$$

$$\sum_{x \in V} \psi_i(K(x, \cdot), \pi)^2 \pi(x) = \sum_{i=1}^{V|-1} \sigma_i(K)^2.$$
Eigenvalues of K:

$$1 = \beta_0(K) \geq \beta_1(K) \geq \cdots \geq \beta_{|V|-1}(K) \geq -1.$$

Singular values of K on $\ell^2(V, \pi)$:

$$1 = \sigma_0(K) \geq \sigma_1(K) \geq \cdots \geq \sigma_{|V|-1}(K) \geq 0$$

where

$$\sigma_i(K) = \sqrt{\beta_i(KK^*)} = \sqrt{\beta_i(K^*K)}.$$

Theorem: Consider (K, π). Let $(\psi_i)_{0}^{\{|V|-1\}}$ be a basis of $\ell^2(V, \pi)$ such that $KK^*\psi_i = \sigma_i(K)^2\psi_i$ (assume $\psi_0 = 1$). Then

$$d_2(K(x, \cdot), \pi)^2 = \sum_{i=1}^{|V|-1} \sigma_i(K)^2|\psi_i(x)|^2$$

$$\sum_{x \in V} d_2(K_0, n(x, \cdot), \pi)^2 \pi(x) = \sum_{i=1}^{|V|-1} \sigma_i(K)^2.$$
Eigenvalues of K:

$$1 = \beta_0(K) \geq \beta_1(K) \geq \cdots \geq \beta_{|V|-1}(K) \geq -1.$$

Singular values of K on $\ell^2(V, \pi)$:

$$1 = \sigma_0(K) \geq \sigma_1(K) \geq \cdots \geq \sigma_{|V|-1}(K) \geq 0$$

where

$$\sigma_i(K) = \sqrt{\beta_i(KK^*)} = \sqrt{\beta_i(K^*K)}.$$

Theorem: Consider (K, π). Let $(\psi_i)_{0}^{|V|-1}$ be a basis of $\ell^2(V, \pi)$ such that $KK^*\psi_i = \sigma_i(K)^2\psi_i$ (assume $\psi_0 = 1$.) Then

$$d_2(K(x, \cdot), \pi)^2 = \sum_{i=1}^{|V|-1} \sigma_i(K)^2 |\psi_i(x)|^2$$

$$\sum_{x \in V} d_2(K_0, n(x, \cdot), \pi)^2 \pi(x) = \sum_{i=1}^{|V|-1} \sigma_i(K)^2.$$
Main technical result

Theorem Let \((K_i)_{1}^{\infty}\) be a sequence in \(V\) with positive invariant measure \(\pi\). For \(j \geq 1\) and \(0 \leq i \leq |V| - 1\) let \(\sigma_i(K_j)\) be the singular values of \(K_j\) on \(\ell^2(V, \pi)\) then

\[
d_2(K_0, n(x, \cdot), \pi) \leq (\pi(x)^{-1} - 1)^{1/2} \prod_{1}^{n} \sigma_1(K_j)
\]

and

\[
\sum_{x \in V} d_2(K_0, n(x, \cdot), \pi)^2 \pi(x) \leq \sum_{i=1}^{n} \prod_{j=1}^{n} \sigma_i(K_j)^2.
\]

Main idea of proof:
For all \(k = 1, \ldots, |V| - 1\)

\[
\sum_{i \leq k} \sigma_i(K_1 \cdots K_n) \leq \sum_{i \leq k} \sigma_i(K_1) \cdots \sigma_i(K_n)^2.
\]
Main technical result

Theorem Let \((K_i)_{i=1}^{\infty}\) be a sequence in \(V\) with positive invariant measure \(\pi\). For \(j \geq 1\) and \(0 \leq i \leq |V| - 1\) let \(\sigma_i(K_j)\) be the singular values of \(K_j\) on \(\ell^2(V, \pi)\) then

\[
d_2(K_0, n(x, \cdot), \pi) \leq (\pi(x)^{-1} - 1)^{1/2} \prod_{i=1}^{n} \sigma_1(K_j)
\]

and

\[
\sum_{x \in V} d_2(K_0, n(x, \cdot), \pi)^2 \pi(x) \leq \sum_{i=1}^{\lfloor V \rfloor - 1} \prod_{j=1}^{n} \sigma_i(K_j)^2.
\]

Main idea of proof:

For all \(k = 1, \ldots, |V| - 1\)

\[
\sum_{j=1}^{k} \sigma_j(K_1 \cdots K_n) \leq \sum_{j=1}^{k} \prod_{i=1}^{n} \sigma_j(K_i)^2
\]

The inequality follows from chapter 3 in *Topics in matrix analysis* by Horn and Johnson.
Main technical result

Theorem Let \((K_i)_{1}^{\infty}\) be a sequence in \(V\) with positive invariant measure \(\pi\). For \(j \geq 1\) and \(0 \leq i \leq |V| - 1\) let \(\sigma_i(K_j)\) be the singular values of \(K_j\) on \(\ell^2(V, \pi)\) then

\[
d_2(K_0, n(x, \cdot), \pi) \leq (\pi(x)^{-1} - 1)^{1/2} \prod_{i=1}^{n} \sigma_1(K_j)
\]

and

\[
\sum_{x \in V} d_2(K_0, n(x, \cdot), \pi)^2 \pi(x) \leq \sum_{i=1}^{|V|-1} \prod_{j=1}^{n} \sigma_i(K_j)^2.
\]

Main idea of proof:
For all \(k = 1, \ldots, |V| - 1\)

\[
\sum_{j=1}^{k} \sigma_j(K_1 \cdots K_n) \leq \sum_{j=1}^{k} \prod_{i=1}^{n} \sigma_j(K_i)^2
\]

The inequality follows from chapter 3 in *Topics in matrix analysis* by Horn and Johnson.
Main technical result

Theorem Let \((K_i)_{i=1}^{\infty}\) be a sequence in \(V\) with positive invariant measure \(\pi\). For \(j \geq 1\) and \(0 \leq i \leq |V| - 1\) let \(\sigma_i(K_j)\) be the singular values of \(K_j\) on \(\ell^2(V, \pi)\) then

\[
d_2(K_0, n(x, \cdot), \pi) \leq (\pi(x)^{-1} - 1)^{1/2} \prod_{i=1}^{n} \sigma_1(K_j)
\]

and

\[
\sum_{x \in V} d_2(K_0, n(x, \cdot), \pi)^2 \pi(x) \leq \sum_{i=1}^{|V| - 1} \prod_{j=1}^{n} \sigma_i(K_j)^2.
\]

Main idea of proof:

For all \(k = 1, \ldots, |V| - 1\)

\[
\sum_{j=1}^{k} \sigma_j(K_1 \cdots K_n) \leq \sum_{j=1}^{k} \prod_{i=1}^{n} \sigma_j(K_i)^2
\]

The inequality follows from chapter 3 in *Topics in matrix analysis* by Horn and Johnson.
Remarks:

- Let $Q = \{Q\}$ have invariant measure π.

 1. $\sigma_1(Q) < 1$ implies $Q^n(x, \cdot) \rightarrow \pi$ for all x

 2. (Q, π) irreducible, aperiodic and reversible w.r.t. π implies $\sigma_1(Q) < 1$
Remarks:

- Let $Q = \{Q\}$ have invariant measure π.

 1. $\sigma_1(Q) < 1$ implies $Q^n(x, \cdot) \to \pi$ for all x
 2. (Q, π) irreducible, aperiodic and reversible w.r.t. π implies $\sigma_1(Q) < 1$

Counter example: Rudvalis shuffle
Remarks:

- Let $Q = \{Q\}$ have invariant measure π.

 1. $\sigma_1(Q) < 1$ implies $Q^n(x, \cdot) \to \pi$ for all x
 2. (Q, π) irreducible, aperiodic and reversible w.r.t. π implies $\sigma_1(Q) < 1$

Counter example: Rudvalis shuffle

Potential weaknesses:

1. K_i transpose cards $i, i+1$ or nothing with probability $1/2$.

Remarks:

- Let $\mathcal{Q} = \{Q\}$ have invariant measure π.

 1. $\sigma_1(Q) < 1$ implies $Q^n(x, \cdot) \to \pi$ for all x
 2. (Q, π) irreducible, aperiodic and reversible w.r.t. π implies $\sigma_1(Q) < 1$

Counter example: Rudvalis shuffle

- Potential weaknesses:

 1. K_i transpose cards i, $i+1$ or nothing with probability $1/2$.
 2. $\sigma_1(K_1, \ldots, K_n) < 1$ but $\sigma_1(K_i) = 1$
Remarks:

- Let $Q = \{Q\}$ have invariant measure π.
 1. $\sigma_1(Q) < 1$ implies $Q^n(x, \cdot) \rightarrow \pi$ for all x
 2. (Q, π) irreducible, aperiodic and reversible w.r.t. π implies $\sigma_1(Q) < 1$

 Counter example: Rudvalis shuffle

- Potential weaknesses:
 1. K_i transpose cards $i, i + 1$ or nothing with probability $1/2$.
 2. $\sigma_1(K_1 \cdots K_n) < 1$ but $\sigma_1(K_i) = 1$
Remarks:

Let $Q = \{Q\}$ have invariant measure π.

1. $\sigma_1(Q) < 1$ implies $Q^n(x, \cdot) \to \pi$ for all x
2. (Q, π) irreducible, aperiodic and reversible w.r.t. π implies $\sigma_1(Q) < 1$

Counter example: Rudvalis shuffle

Potential weaknesses:

1. K_i transpose cards $i, i + 1$ or nothing with probability $1/2$.
2. $\sigma_1(K_1 \cdots K_n) < 1$ but $\sigma_1(K_i) = 1$
Theorem Let $Q = \{Q_1, \ldots, Q_k\}$ be a family of kernels on V with invariant measure π.

- (Q, π) is ergodic iff $\sigma_1(Q_j) < 1$ for all $1 \leq j \leq k$.

- If (Q, π) is ergodic then for any $(K_i)_{i=1}^\infty$ with invariant measure π and infinitely many $K_i \in Q$ we have

$$\forall x, \lim_{n \to \infty} K_{0,n}(x, \cdot) - \pi = 0$$
Theorem Let \(Q = \{ Q_1, \ldots, Q_k \} \) be a family of kernels on \(V \) with invariant measure \(\pi \).

- \((Q, \pi)\) is ergodic iff \(\sigma_1(Q_j) < 1 \) for all \(1 \leq j \leq k \).

- If \((Q, \pi)\) is ergodic then for any \((K_i)_1^\infty\) with invariant measure \(\pi \) and infinitely many \(K_i \in Q \) we have

\[
\forall x, \lim_{n \to \infty} K_{0,n}(x, \cdot) - \pi = 0
\]
Main technical result simplifies when $V = G$, in this case $\pi = 1/|G|$.

- $(\rho_i)_{i=1}^\infty$ a sequence of probability measures on G.

- $K_i(x, y) = \rho_i(x^{-1}y)$
Main technical result simplifies when \(V = G \), in this case \(\pi = 1/|G| \).

- \((p_i)_1^\infty \) a sequence of probability measures on \(G \).

- \(K_i(x, y) = p_i(x^{-1}y) \)

- \(K_{n,m}(x, y) = p_{n+1} \cdots p_m(x^{-1}y) \)
Application to time inhomogeneous random walks on finite groups

Main technical result simplifies when $V = G$, in this case $\pi = 1/|G|$.

- $(p_i)_1^\infty$ a sequence of probability measures on G.

- $K_i(x, y) = p_i(x^{-1}y)$

- $K_{n,m}(x, y) = p_{n+1} \ast \cdots \ast p_{m}(x^{-1}y)$

- Set $K_{n,m}(x, y) = p_{n,m}(x^{-1}y)$
Application to time inhomogeneous random walks on finite groups

Main technical result simplifies when $V = G$, in this case $\pi = 1/|G|$.

- $(p_i)_1^\infty$ a sequence of probability measures on G.

- $K_i(x, y) = p_i(x^{-1}y)$

- $K_{n,m}(x, y) = p_{n+1} \ast \cdots \ast p_m(x^{-1}y)$

- Set $K_{n,m}(x, y) = p_{n,m}(x^{-1}y)$

- For $0 \leq j \leq |G| - 1$ set $\sigma_j(p_i) = \sigma_j(K_i)$ where singular values are taken w.r.t π.
Application to time inhomogeneous random walks on finite groups

Main technical result simplifies when $V = G$, in this case $\pi = 1/|G|$.

- $(p_i)_1^{\infty}$ a sequence of probability measures on G.

- $K_i(x, y) = p_i(x^{-1}y)$

- $K_{n,m}(x, y) = p_{n+1} \ast \cdots \ast p_m(x^{-1}y)$

- Set $K_{n,m}(x, y) = p_{n,m}(x^{-1}y)$

- For $0 \leq j \leq |G| - 1$ set $\sigma_j(p_i) = \sigma_j(K_i)$ where singular values are taken w.r.t π.
Main technical result simplifies when $V = G$, in this case $\pi = 1/|G|$.

- $(p_i)_1^\infty$ a sequence of probability measures on G.

- $K_i(x,y) = p_i(x^{-1}y)$

- $K_{n,m}(x,y) = p_{n+1} \ast \cdots \ast p_m(x^{-1}y)$

- Set $K_{n,m}(x,y) = p_{n,m}(x^{-1}y)$

- For $0 \leq j \leq |G| - 1$ set $\sigma_j(p_i) = \sigma_j(K_i)$ where singular values are taken w.r.t π.
Theorem

Let \((p_i)_{i=1}^{\infty}\) be a sequence on \(G\). Then

\[
d_2(p_0, n, \pi) \leq (|G| - 1)^{1/2} \prod_{i=1}^{n} \sigma_1(p_j)
\]

\[
d_2(p_0, n, \pi) \leq \left(\sum_{i=1}^{|G|-1} \prod_{j=1}^{n} \sigma_i(p_j)^2 \right)^{1/2}.
\]

Example: \((S_j)_{j=1}^{\infty}\) a sequence of generating sets of \(G\) s.t. \(\text{id} \in S_j\). Set

\[
K_j(x, y) = \begin{cases}
1/|S_j| & \text{if } x^{-1}y \in S_j \\
0 & \text{otherwise.}
\end{cases}
\]
Theorem

Let \((p_i)_{i=1}^\infty\) be a sequence on \(G\). Then

\[
d_2(p_0, n, \pi) \leq (|G| - 1)^{1/2} \prod_{j=1}^n \sigma_1(p_j)
\]

\[
d_2(p_0, n, \pi) \leq \left(\sum_{i=1}^{|G|-1} \prod_{j=1}^n \sigma_i(p_j)^2 \right)^{1/2}
\]

Example: \((S_j)_{i=1}^\infty\) a sequence of generating sets of \(G\) s.t. \(\text{id} \in S_j\). Set

\[
K_j(x, y) = \begin{cases}
\frac{1}{|S_j|} & \text{if } x^{-1}y \in S_j \\
0 & \text{otherwise}.
\end{cases}
\]

Well known eigenvalue estimates give us

\[
\sigma(K_j)^2 \leq 1 - \frac{1}{|S_j|^2 d_j^2}
\]

where \(d_j\) is the diameter of the Cayley graph associated to \(S_j^\# = S_j \cup S_j^{-1}\).
Let \((p_i)_{1}^{\infty}\) be a sequence on \(G\). Then
\[
d_2(p_0, n, \pi) \leq (|G| - 1)^{1/2} \prod_{1}^{n} \sigma_1(p_j)
\]
\[
d_2(p_0, n, \pi) \leq \left(\sum_{i=1}^{|G|-1} \prod_{j=1}^{n} \sigma_i(p_j)^2 \right)^{1/2}.
\]

Example: \((S_j)_{1}^{\infty}\) a sequence of generating sets of \(G\) s.t. \(\text{id} \in S_j\). Set
\[
K_j(x, y) = \begin{cases}
1/|S_j| & \text{if } x^{-1}y \in S_j \\
0 & \text{otherwise}.
\end{cases}
\]

Well know eigenvalue estimates give us
\[
\sigma_1(K_j)^2 \leq 1 - \frac{1}{|S_j|^2 d_j^2}
\]
where \(d_j\) is the diameter of the Caley graph associated to \(S_j^\# = S_j \cup S_j^{-1}\).
Theorem

Let \((p_i)_{i=1}^\infty\) be a sequence on \(G\). Then

\[
d_2(p_0, n, \pi) \leq (|G| - 1)^{1/2} \prod_{j=1}^n \sigma_1(p_j)
\]

\[
d_2(p_0, n, \pi) \leq \left(\sum_{i=1}^{|G|-1} \prod_{j=1}^n \sigma_i(p_j)^2 \right)^{1/2}.
\]

Example: \((S_j)_{i=1}^\infty\) a sequence of generating sets of \(G\) s.t. \(id \in S_j\). Set

\[
K_j(x, y) = \begin{cases}
1/|S_j| & \text{if } x^{-1}y \in S_j \\
0 & \text{otherwise.}
\end{cases}
\]

Well know eigenvalue estimates give us

\[
\sigma_1(K_j)^2 \leq 1 - \frac{1}{|S_j|^2 d_j^2}
\]

where \(d_j\) is the diameter of the Caley graph associated to \(S_j^\# = S_j \cup S_j^{-1}\).
Theorem

Let \((p_i)_{i=1}^\infty\) be a sequence on \(G\). Then

\[
d_2(p_0, n, \pi) \leq (|G| - 1)^{1/2} \prod_{i=1}^n \sigma_1(p_j)
\]

\[
d_2(p_0, n, \pi) \leq \left(\sum_{i=1}^{|G| - 1} \prod_{j=1}^n \sigma_i(p_j)^2\right)^{1/2}.
\]

Example: \((S_j)_{i=1}^\infty\) a sequence of generating sets of \(G\) s.t. \(\text{id} \in S_j\). Set

\[
K_j(x, y) = \begin{cases}
1/|S_j| & \text{if } x^{-1}y \in S_j \\
0 & \text{otherwise.}
\end{cases}
\]

Well know eigenvalue estimates give us

\[
\sigma_1(K_j)^2 \leq 1 - \frac{1}{|S_j|^2 d_j^2}
\]

where \(d_j\) is the diameter of the Caley graph associated to \(S_j^\# = S_j \cup S_j^{-1}\).

\[
d_2(K_0, n(x, \cdot), \pi) \leq |G|^{1/2} \prod_{i=1}^n \left(1 - \frac{1}{|S_j|^2 d_j^2}\right)^{1/2}
\]
Semi-random transpositions

Let $G = S_n$ and $\pi = 1/n!$. For $1 \leq i \leq n$ set

$$q_i(x) = \begin{cases}
1/n & \text{if } x = (i, j) \text{ for } 1 \leq j \leq n \\
0 & \text{otherwise.}
\end{cases}$$

Theorem: For $n > 1$, $c > 0$ and $k \geq n(\log n + c)$

$$d_2(q_1^{(k)}, \pi) \leq \sqrt{2}e^{-c}.$$

Note: q_i is reversible w.r.t. π. For any i, q_i and q_j are images of each other under some inner automorphism of S_n.

Semi-random transpositions

Let $G = S_n$ and $\pi = 1/n!$. For $1 \leq i \leq n$ set

$$q_i(x) = \begin{cases}
1/n & \text{if } x = (i,j) \text{ for } 1 \leq j \leq n \\
0 & \text{otherwise.}
\end{cases}$$

Theorem: For $n > 1$, $c > 0$ and $k \geq n(\log n + c)$

$$d_2(q_1^{(k)}, \pi) \leq \sqrt{2}e^{-c}.$$

Note: q_i is reversible w.r.t. π. For any i, q_1 and q_i are images of each other under some inner automorphism of S_n.

- q_i's have same singular values
Semi-random transpositions

Let $G = S_n$ and $\pi = 1/n!$. For $1 \leq i \leq n$ set

$$q_i(x) = \begin{cases}
1/n & \text{if } x = (i, j) \text{ for } 1 \leq j \leq n \\
0 & \text{otherwise.}
\end{cases}$$

Theorem: For $n > 1$, $c > 0$ and $k \geq n(\log n + c)$

$$d_2(q_i^{(k)}, \pi) \leq \sqrt{2}e^{-c}.$$

Note: q_i is reversible w.r.t. π. For any i q_1 and q_i are images of each other under some inner automorphism of S_n.

- q_i's have same singular values
- $d_2(q_i^{(k)}, \pi)^2 = d_2(q_1^{(k)}, \pi)^2 = \sum_{m=1}^{n} \sigma_m(q_i)^2$
Let \(G = S_n \) and \(\pi = 1/n! \). For \(1 \leq i \leq n \) set

\[
q_i(x) = \begin{cases}
1/n & \text{if } x = (i,j) \text{ for } 1 \leq j \leq n \\
0 & \text{otherwise.}
\end{cases}
\]

Theorem: For \(n > 1, c > 0 \) and \(k \geq n(\log n + c) \)

\[
d_2(q_1^{(k)}, \pi) \leq \sqrt{2}e^{-c}.
\]

Note: \(q_i \) is reversible w.r.t. \(\pi \). For any \(i \) \(q_1 \) and \(q_i \) are images of each other under some inner automorphism of \(S_n \).

- \(q_i \)'s have same singular values
- \(d_2(q_i^{(k)}, \pi)^2 = d_2(q_1^{(k)}, \pi)^2 = \sum_{m=1}^{n-1} \sigma_m(q_1)^{2k} \)
Semi-random transpositions

Let $G = S_n$ and $\pi = 1/n!$. For $1 \leq i \leq n$ set

$$q_i(x) = \begin{cases} 1/n & \text{if } x = (i, j) \text{ for } 1 \leq j \leq n \\ 0 & \text{otherwise.} \end{cases}$$

Theorem: For $n > 1$, $c > 0$ and $k \geq n(\log n + c)$

$$d_2(q_1^{(k)}, \pi) \leq \sqrt{2}e^{-c}.$$

Note: q_i is reversible w.r.t. π. For any i q_1 and q_i are images of each other under some inner automorphism of S_n.

- q_i’s have same singular values
- $d_2(q_i^{(k)}, \pi)^2 = d_2(q_1^{(k)}, \pi)^2 = \sum_{m=1}^{n!-1} \sigma_m(q_1)^{2k}$
Semi-random transpositions

Definition: Let \(r = (r_i)_{1}^{\infty} \) with \(r_i \in \{1, \ldots, n\} \). The \(r \)-semi-random transposition shuffle is associated to \((p_i)_{1}^{\infty} \) where \(p_i = q_{r_i} \).

\[p_{0,k}^r = p_1 \ast \cdots \ast p_k : \text{distribution after } k \text{ steps} \]

Theorem: For any \(r = (r_i)_{1}^{\infty} \), \(q_i \in \{1, \ldots, n\} \)

\[d_2(p_{0,k}^r, \pi) \leq d_2(q_{1}^{(k)}, \pi) \]
Semi-random transpositions

Definition: Let $r = (r_i)_{i=1}^{\infty}$ with $r_i \in \{1, \ldots, n\}$. The r-semi-random transposition shuffle is associated to $(p_i)_{i=1}^{\infty}$ where $p_i = q_{r_i}$.

$p_{0,k}^r = p_1 \ast \cdots \ast p_k$: distribution after k steps

Theorem For any $r = (r_i)_{i=1}^{\infty}$, $r_i \in \{1, \ldots, n\}$,

$$d_2(p_{0,k}^r, \pi) \leq d_2(q_1^{(k)}, \pi).$$

For $c > 0$, $k \geq n(\log n + c)$, $c > 0$ then $d_2(p_{0,k}^r, \pi) \leq \sqrt{2}e^{-c}$.
Semi-random transpositions

Definition: Let \(r = (r_i)_1^\infty \) with \(r_i \in \{1, \ldots, n\} \). The \(r \)-semi-random transposition shuffle is associated to \((p_i)_1^\infty\) where \(p_i = q_{r_i} \).

\[p_{0,k}^r = p_1 \ast \cdots \ast p_k : \text{distribution after } k \text{ steps} \]

Theorem For any \(r = (r_i)_1^\infty \), \(r_i \in \{1, \ldots, n\} \)

\[d_2(p_{0,k}^r, \pi) \leq d_2(q_1^{(k)}, \pi). \]

For \(c > 0 \), \(k \geq n(\log n + c) \), \(c > 0 \) then \(d_2(p_{0,k}^r, \pi) \leq \sqrt{2}e^{-c} \).

Proof From techniques just described
Semi-random transpositions

Definition: Let \(r = (r_i)_{1}^{\infty} \) with \(r_i \in \{1, \ldots, n\} \). The \(r \)-semi-random transposition shuffle is associated to \((p_i)_{1}^{\infty} \) where \(p_i = q_{r_i} \).

\[p_{0,k}^{r} = p_1 \ast \cdots \ast p_k : \text{distribution after } k \text{ steps} \]

Theorem For any \(r = (r_i)_{1}^{\infty}, r_i \in \{1, \ldots, n\} \)

\[d_2(p_{0,k}^{r}, \pi) \leq d_2(q_{1}^{(k)}, \pi). \]

For \(c > 0, k \geq n(\log n + c), \ c > 0 \) then \(d_2(p_{0,k}^{r}, \pi) \leq \sqrt{2e^{-c}}. \)

Proof From techniques just described

\[d_2(p_{0,k}^{r}, \pi)^2 \leq \sum_{m=1}^{n!-1} \prod_{i=1}^{k} \sigma_m(q_{r_i})^2 - \sum_{m=1}^{n!-1} \sigma_m(q_{1})^{2k} \]
Semi-random transpositions

Definition: Let \(r = (r_i)_1^\infty \) with \(r_i \in \{1, \ldots, n\} \). The \(r \)-semi-random transposition shuffle is associated to \((p_i)_1^\infty\) where \(p_i = q_{r_i} \).

\[p_{0,k}^r = p_1 \ast \cdots \ast p_k : \text{distribution after } k \text{ steps} \]

Theorem For any \(r = (r_i)_1^\infty \), \(r_i \in \{1, \ldots, n\} \)

\[d_2(p_{0,k}^r, \pi) \leq d_2(q_1^{(k)}, \pi). \]

For \(c > 0, k \geq n(\log n + c), \ c > 0 \) then \(d_2(p_{0,k}^r, \pi) \leq \sqrt{2}e^{-c}. \)

Proof From techniques just described

\[d_2(p_{0,k}^r, \pi)^2 \leq \sum_{m=1}^{n!-1} \prod_{i=1}^k \sigma_m(q_{r_i})^2 = \sum_{m=1}^{n!-1} \sigma_m(q_1)^{2k} - d_2(q_1^{(k)}, \pi)^2. \]
Semi-random transpositions

Definition: Let \(r = (r_i)_1^\infty \) with \(r_i \in \{1, \ldots, n\} \). The \(r \)-semi-random transposition shuffle is associated to \((p_i)_1^\infty \) where \(p_i = q_{r_i} \).

\(p_{0,k}^r = p_1 \ast \cdots \ast p_k \) : distribution after \(k \) steps

Theorem For any \(r = (r_i)_1^\infty \), \(r_i \in \{1, \ldots, n\} \)

\[
d_2(p_{0,k}^r, \pi) \leq d_2(q_1^{(k)}, \pi).
\]

For \(c > 0 \), \(k \geq n(\log n + c) \), \(c > 0 \) then \(d_2(p_{0,k}^r, \pi) \leq \sqrt{2}e^{-c} \).

Proof From techniques just described

\[
d_2(p_{0,k}^r, \pi)^2 \leq \sum_{m=1}^{n!-1} \prod_{i=1}^{k} \sigma_m(q_{r_i})^2 = \sum_{m=1}^{n!-1} \sigma_m(q_1)^{2k} = d_2(q_1^{(k)}, \pi)^2.
\]
Semi-random transpositions

Definition: Let \(r = (r_i)_1^{\infty} \) with \(r_i \in \{1, \ldots, n\} \). The \(r \)-semi-random transposition shuffle is associated to \((p_i)_1^{\infty}\) where \(p_i = q_{r_i} \).

\(p_{0,k}^r = p_1 \ast \cdots \ast p_k \) : distribution after \(k \) steps

Theorem For any \(r = (r_i)_1^{\infty} \), \(r_i \in \{1, \ldots, n\} \)

\[
d_2(p_{0,k}^r, \pi) \leq d_2(q_1^{(k)}, \pi).
\]

For \(c > 0, k \geq n(\log n + c), \ c > 0 \) then \(d_2(p_{0,k}^r, \pi) \leq \sqrt{2e}^{-c} \).

Proof From techniques just described

\[
d_2(p_{0,k}^r, \pi)^2 \leq \sum_{m=1}^{n!-1} \prod_{i=1}^{k} \sigma_m(q_{r_i})^2 = \sum_{m=1}^{n!-1} \sigma_m(q_1)^{2k} = d_2(q_1^{(k)}, \pi)^2.
\]
Remark:

Information can be lost with the inequality

$$\sum_{j=1}^{k} \sigma_j(K_1 \cdots K_n) \leq \sum_{j=1}^{k} \prod_{i=1}^{n} \sigma_j(K_i)^2.$$

Let $r = (r_i)_{1}^{\infty}$ be a sequence of i.i.d. uniform random variables taking values in $\{1, \ldots, n\}$.

$\rho_{0,k}$: random transposition shuffle
Remark:

Information can be lost with the inequality

\[\sum_{j=1}^{k} \sigma_j(K_1 \cdots K_n) \leq \sum_{j=1}^{k} \prod_{i=1}^{n} \sigma_j(K_i)^2. \]

Let \(r = (r_i)_{i=1}^{\infty} \) be a sequence of \(i.i.d. \) uniform random variables taking values in \(\{1, \ldots, n\} \).

\(\rho_{0,k}^\epsilon \) \: random transposition shuffle

Diaconis-Shahshahani:

For \(c > 0 \), \(k \geq (n/2)(\log n + c) \)

\[\beta(\rho_{0,k}^\epsilon, \pi) \leq 2^{-\epsilon}. \]
Remark:

Information can be lost with the inequality

\[\sum_{j=1}^{k} \sigma_j(K_1 \cdots K_n) \leq \sum_{j=1}^{k} \prod_{i=1}^{n} \sigma_j(K_i)^2. \]

Let \(r = (r_i)_{1}^{\infty} \) be a sequence of \(i.i.d. \) uniform random variables taking values in \(\{1, \ldots, n\} \).

\(p^r_{0,k} \) : random transposition shuffle

Diaconis-Shahshahani:

For \(c > 0, \ k \geq (n/2)(\log n + c) \)

\[d_2(p^r_{0,k}, \pi) \leq \beta e^{-c}. \]
Remark:

Information can be lost with the inequality

\[
\sum_{j=1}^{k} \sigma_j(K_1 \cdots K_n) \leq \sum_{j=1}^{k} \prod_{i=1}^{n} \sigma_j(K_i)^2.
\]

Let \(r = (r_i)_{1}^{\infty} \) be a sequence of \(i.i.d. \) uniform random variables taking values in \(\{1, \ldots, n\} \).

\(p_{0,k}^r \): random transposition shuffle

Diaconis-Shahshahani:
For \(c > 0 \), \(k \geq (n/2)(\log n + c) \)

\[
d_2(p_{0,k}^r, \pi) \leq \beta e^{-c}.
\]
Semi-random insertions

c_{i,j}: pick card in position \(i\) and insert it into position \(j\).

\[c_{i,j} = \begin{cases}
\text{id} & \text{if } i = j \\
(j, j - 1, \ldots, i + 1, i) & \text{if } 1 \leq i < j \leq n \\
(j, j + 1, \ldots, i - 1, i) & \text{if } 1 \leq j < i \leq n.
\end{cases} \]

Random insertion measure on \(S_n\):

\[\tilde{q}(x) = \begin{cases}
1/n & \text{if } x = \text{id}, \\
2/n^2 & \text{if } x = c_{i,j} \text{ if } |i - j| = 1 \\
1/n^2 & \text{if } x = c_{i,j} \text{ if } |i - j| > 1 \\
0 & \text{otherwise.}
\end{cases} \]

Theorem (Diaconis and Saloff-Coste): For all \(n \geq 28\), \(c > 2\) and all \(k \geq 2n(\log n + c)\)

\[d_2(\tilde{\pi}(k), \pi) \leq 2e^{-\frac{k}{2}}. \]
Semi-random insertions

c_{i,j}: pick card in position \(i \) and insert it into position \(j \).

\[
c_{i,j} = \begin{cases}
\text{id} & \text{if } i = j \\
(j, j - 1, \ldots, i + 1, i) & \text{if } 1 \leq i < j \leq n \\
(j, j + 1, \ldots, i - 1, i) & \text{if } 1 \leq j < i \leq n.
\end{cases}
\]

Random insertion measure on \(S_n \):

\[
\tilde{q}(x) = \begin{cases}
\frac{1}{n} & \text{if } x = \text{id}, \\
\frac{2}{n^2} & \text{if } x = c_{i,j} \text{ if } |i - j| = 1 \\
\frac{1}{n^2} & \text{if } x = c_{i,j} \text{ if } |i - j| > 1 \\
0 & \text{otherwise}.
\end{cases}
\]

Theorem (Diaconis and Saloff-Coste): For all \(n \geq 28 \), \(c > 2 \) and all \(k \geq 2n(\log n + c) \)

\[
d_2(\tilde{q}^{(k)}, \pi) \leq 2e^{-(c-2)}.
\]
Semi-random insertions

c_{i,j}: pick card in position i and insert it into position j.

\[
c_{i,j} = \begin{cases}
 \text{id} & \text{if } i = j \\
 (j, j-1, \ldots, i+1, i) & \text{if } 1 \leq i < j \leq n \\
 (j, j+1, \ldots, i-1, i) & \text{if } 1 \leq j < i \leq n.
\end{cases}
\]

Random insertion measure on S_n:

\[
\tilde{q}(x) = \begin{cases}
 1/n & \text{if } x = \text{id}, \\
 2/n^2 & \text{if } x = c_{i,j} \text{ if } |i-j| = 1 \\
 1/n^2 & \text{if } x = c_{i,j} \text{ if } |i-j| > 1 \\
 0 & \text{otherwise}.
\end{cases}
\]

Theorem (Diaconis and Saloff-Coste): For all $n \geq 28$, $c > 2$ and all $k \geq 2n(\log n + c)$

\[
d_2(\tilde{q}^{(k)}, \pi) \leq 2e^{-(c-2)}.
\]
Semi-random insertions

For \(i \in \{1, \ldots, n\} \) set

\[
\tilde{q}_i(x) = \begin{cases}
 1/n & \text{if } x = c_{i,j} \text{ for some } j, 1 \leq j \leq n, \\
 0 & \text{otherwise.}
\end{cases}
\]

The adjoint \(\tilde{q}_i^*(x) = \tilde{q}_i(x^{-1}) \) inserts uniformly chosen card into position \(i \).
Semi-random insertions

For \(i \in \{1, \ldots, n\}\) set

\[
\tilde{q}_i(x) = \begin{cases}
 1/n & \text{if } x = c_{i,j} \text{ for some } j, 1 \leq j \leq n, \\
 0 & \text{otherwise}.
\end{cases}
\]

The adjoint \(\tilde{q}_i^*(x) = \tilde{q}_i(x^{-1})\) inserts uniformly chosen card into position \(i\).

Note that:

- For any \(1 \leq i \leq n\), \(\tilde{q}_i^* + \tilde{q}_i = \tilde{1}\).
Semi-random insertions

For \(i \in \{1, \ldots, n\} \) set

\[
\tilde{q}_i(x) = \begin{cases}
1/n & \text{if } x = c_{i,j} \text{ for some } j, 1 \leq j \leq n, \\
0 & \text{otherwise.}
\end{cases}
\]

The adjoint \(\tilde{q}_i^*(x) = \tilde{q}_i(x^{-1}) \) inserts uniformly chosen card into position \(i \).

Note that:

- For any \(1 \leq i \leq n \), \(\tilde{q}_i^* \ast \tilde{q}_i = \tilde{q} \).
- \(\sigma_j(\tilde{q}_i) = \sigma_j(\tilde{q})^{1/2} \), \(0 \leq j \leq n! - 1 \).
Semi-random insertions

For $i \in \{1, \ldots, n\}$ set

$$\tilde{q}_i(x) = \begin{cases} 1/n & \text{if } x = c_{i,j} \text{ for some } j, 1 \leq j \leq n, \\ 0 & \text{otherwise.} \end{cases}$$

The adjoint $\tilde{q}_i^*(x) = \tilde{q}_i(x^{-1})$ inserts uniformly chosen card into position i.

Note that:

- For any $1 \leq i \leq n$, $\tilde{q}_i^* \ast \tilde{q}_i = \tilde{q}$.
- $\sigma_j(\tilde{q}_i) = \sigma_j(\tilde{q})^{1/2}$, $0 \leq j \leq n! - 1$.

Definition Let $r = (n)^\infty$ with $r_n \in \{1, \ldots, n\}$. The r-semi-random insertion shuffle is associated to $(\tilde{p}_i)^\infty$ where $p_i = \tilde{q}_i$.

$\tilde{p}_{i,k} = \tilde{p}_i \ast \cdots \ast \tilde{p}_k$ - distribution after k steps.
Semi-random insertions

For $i \in \{1, \ldots, n\}$ set

$$\tilde{q}_i(x) = \begin{cases}
1/n & \text{if } x = c_{i,j} \text{ for some } j, 1 \leq j \leq n, \\
0 & \text{otherwise.}
\end{cases}$$

The adjoint $\tilde{q}_i^*(x) = \tilde{q}_i(x^{-1})$ inserts uniformly chosen card into position i.

Note that:

- For any $1 \leq i \leq n$, $\tilde{q}_i^* \ast \tilde{q}_i = \tilde{q}$.
- $\sigma_j(\tilde{q}_i) = \sigma_j(\tilde{q})^{1/2}$, $0 \leq j \leq n! - 1$.

Definition Let $r = (r_i)_1^\infty$ with $r_i \in \{1, \ldots, n\}$. The r-semi-random insertion shuffle is associated to $(\tilde{p}_i)_1^\infty$ where $\tilde{p}_i = \tilde{q}_{r_i}$.

$\tilde{p}_{0,k}^r = \tilde{p}_1 \ast \cdots \ast \tilde{p}_k$: distribution after k steps.
Semi-random insertions

For $i \in \{1, \ldots, n\}$ set

$$
\tilde{q}_i(x) = \begin{cases}
1/n & \text{if } x = c_{i,j} \text{ for some } j, 1 \leq j \leq n, \\
0 & \text{otherwise.}
\end{cases}
$$

The adjoint $\tilde{q}_i^*(x) = \tilde{q}_i(x^{-1})$ inserts uniformly chosen card into position i.

Note that:

- For any $1 \leq i \leq n$, $\tilde{q}_i^* \ast \tilde{q}_i = \tilde{q}$.
- $\sigma_j(\tilde{q}_i) = \sigma_j(\tilde{q})^{1/2}$, $0 \leq j \leq n! - 1$.

Definition Let $r = (r_i)_1^\infty$ with $r_i \in \{1, \ldots, n\}$. The r-semi-random insertion shuffle is associated to $(\tilde{p}_i)_1^\infty$ where $\tilde{p}_i = \tilde{q}_{r_i}$.

$$
\tilde{p}_{0,k} = \tilde{p}_1 \ast \cdots \ast \tilde{p}_k : \text{distribution after } k \text{ steps.}
$$
Semi-random insertions

Theorem For any $r = (r_i)_1^\infty, r_i \in \{1, \ldots, n\}$

$$d_2(\tilde{p}_0, 2^k, \pi) \leq d_2(\tilde{q}^{(k)}, \pi).$$

For $n > 28$, $c > 2$ and $k \geq 4n(\log n + c)$

$$d_2(\tilde{p}_0, k, \pi) \leq 2e^{-(c-2)}.$$

Proof

$$d_2(\tilde{p}_0, 2^k, \pi)^2 \leq \sum_{m=1}^{2^k} \prod_{i=1}^{m} \sigma_m(q_i)^2.$$
Theorem For any $r = (r_i)_1^\infty$, $r_i \in \{1, \ldots, n\}$

\[
d_2(\tilde{p}_0^{r}, \pi) \leq d_2(\tilde{q}^{(k)}, \pi).
\]

For $n > 28$, $c > 2$ and $k \geq 4n(\log n + c)$

\[
d_2(\tilde{p}_0^{r}, \pi) \leq 2e^{-(c-2)}.
\]

Proof

\[
d_2(\tilde{p}_0^{r}, \pi)^2 \leq \sum_{m=1}^{n!-1} \prod_{i=1}^{2k} \sigma_m(\tilde{q}_{r_i})^2
\]

\[
= \sum_{m=1}^{n!-1} \sigma_m(\tilde{q})^{2k}
\]
Theorem For any \(r = (r_i)_{1}^{\infty}, r_i \in \{1, \ldots, n\} \)

\[
d_2(\tilde{p}_{0,2k}^r, \pi) \leq d_2(\tilde{q}^{(k)}, \pi).
\]

For \(n > 28, \ c > 2 \) and \(k \geq 4n(\log n + c) \)

\[
d_2(\tilde{p}_{0,k}^r, \pi) \leq 2e^{-(c-2)}.
\]

Proof

\[
d_2(\tilde{p}_{0,2k}^r, \pi)^2 \leq \sum_{m=1}^{n!-1} \prod_{i=1}^{2k} \sigma_m(\tilde{q}_{r_i})^2
\]

\[
= \sum_{m=1}^{n!-1} \sigma_m(\tilde{q})^{2k}
\]

\[
= d_2(\tilde{q}^{(k)}, \pi)
\]
Semi-random insertions

Theorem For any $r = (r_i)_{1}^{\infty}$, $r_i \in \{1, \ldots, n\}$

$$d_2(\tilde{p}^r_{0, 2k}, \pi) \leq d_2(\tilde{q}^{(k)}, \pi).$$

For $n > 28$, $c > 2$ and $k \geq 4n(\log n + c)$

$$d_2(\tilde{p}^r_{0, k}, \pi) \leq 2e^{-(c-2)}.$$

Proof

$$d_2(\tilde{p}^r_{0, 2k}, \pi)^2 \leq \sum_{m=1}^{n!-1} \prod_{i=1}^{2k} \sigma_m(\tilde{q}_{r_i})^2$$

$$= \sum_{m=1}^{n!-1} \sigma_m(\tilde{q})^{2k}$$

$$= d_2(\tilde{q}^{(k)}, \pi).$$
Semi-random insertions

Theorem For any \(r = (r_i)_{1}^{\infty}, r_i \in \{1, \ldots, n\} \)

\[
d_2(\tilde{p}_{0,2k}^r, \pi) \leq d_2(\tilde{q}^{(k)}, \pi).
\]

For \(n > 28, \ c > 2 \) and \(k \geq 4n(\log n + c) \)

\[
d_2(\tilde{p}_{0,k}^r, \pi) \leq 2e^{-(c-2)}.
\]

Proof

\[
d_2(\tilde{p}_{0,2k}^r, \pi)^2 \leq \sum_{m=1}^{n!-1} \prod_{i=1}^{2k} \sigma_m(\tilde{q}_{r_i})^2
\]

\[
= \sum_{m=1}^{n!-1} \sigma_m(\tilde{q})^{2k}
\]

\[
= d_2(\tilde{q}^{(k)}, \pi)
\]