1. Let H and K be subgroups of a group G. Recall that
\[HK := \{hk \mid h \in H, \ k \in K \}. \]
(a) Give an example in which $H \cup K$ is not a subgroup of G.
(b) Give an example in which HK is not a subgroup of G.
(c) Show that the following statements are equivalent.
 i. $HK = \langle H \cup K \rangle$.
 ii. HK is a subgroup of G.
 iii. $HK = KH$.
(d) Show that if $H \subseteq N_G(K)$ then $HK = KH$.
(e) Show that the converse to (1d) does not hold.
(f) Suppose H and K are both normal in G and $H \cap K = \{1\}$. Show that $hk = kh$ for all $h \in H$, $k \in K$.

2. Let (I, \leq) be a partially order set such that for any $i, j \in I$ there exists $k \in I$ such that $i \leq k$ and $j \leq k$.

Let $\{G_i\}_{i \in I}$ be a family of subgroups of a group G such that if $i \leq j$ then $G_i \subseteq G_j$.

(a) Show that in this case $\bigcup_{i \in I} G_i \leq G$.

(b) Let μ_n be the group of n-th roots of unity in \mathbb{C}. Show that
\[\mu_\infty := \bigcup_{n \geq 1} \mu_n \]

is a subgroup of S^1.

3. (a) Let A, B, C be subgroups of a group D such that $B, C \subseteq D$ and $A = B \cap C$. Use the isomorphism theorems to show that
\[\frac{D/B}{C/A} \cong \frac{D/C}{B/A}. \]
First explain why each quotient makes sense.

(b) Let \mathbb{F} be a field and n a positive integer. If necessary, look up the definition of the projective general and projective special linear groups
\[\text{PGL}(n, \mathbb{F}) \quad \text{and} \quad \text{PSL}(n, \mathbb{F}). \]

Let
\[(\mathbb{F}^\times)^{(n)} := \{x \in \mathbb{F}^\times \mid \text{there is } y \in \mathbb{F}^\times \text{ such that } x = y^n\} \]
be the groups of n-th powers in \mathbb{F}^\times. Deduce that
\[\text{PGL}(n, \mathbb{F})/\text{PSL}(n, \mathbb{F}) \cong \mathbb{F}^\times/(\mathbb{F}^\times)^{(n)}. \]
4. (a) Recall that if H normalizes N, then

$$H/H \cap N \rightarrow HN/N, \quad h(H \cap N) \mapsto hN$$

is an isomorphism. Describe the inverse isomorphism explicitly.

(b) Describe the isomorphism in the Butterfly Lemma explicitly.

5. Let G be a group whose only subgroups are $\{1\}$ and G. Show that G is either trivial or cyclic of prime order.

6. Let G be a finite abelian group and p a prime divisor of $|G|$. Prove that G contains an element of order p, without appealing to the structure theorem for finite abelian groups. Hint: choose a proper nontrivial subgroup (when possible) and argue by induction.

This exercise proves a result we will use in class when discussing p-groups. Cauchy’s Theorem says that the result holds for all finite groups, not just the abelian ones. In class we will deduce Cauchy’s Theorem from the Sylow Theorems.

7. Let x, y and z be integers such that x divides z. Prove that

$$\text{lcm}(x, \gcd(y, z)) = \gcd(\text{lcm}(x, y), z).$$

8. Consider the dihedral group of order $2n$.

(a) When n is even, find two subnormal series of length 2 for which $\mathbb{Z}/2$ is one of the slices, but it appears first in one series and last in the other.

(b) Are there such series when n is odd?

9. Let G be a group with a composition series and $H \trianglelefteq G$.

(a) Show that G has a composition series in which H is one of the terms. Deduce that H and G/H have composition series.

(b) The length of some (every) composition series of G is denoted $\ell(G)$. Show that $\ell(G) = \ell(H) + \ell(G/H)$.

(c) If K is another normal subgroup of G, show that

$$\ell(HK) = \ell(H) + \ell(K) - \ell(H \cap K).$$

10. (a) Let $\rho = (a_1, \ldots, a_r)$ be an r-cycle and σ a permutation in S_n. Show that

$$\sigma \rho \sigma^{-1} = (\sigma(a_1), \sigma(a_2), \ldots, \sigma(a_r)).$$

(b) Describe the conjugacy classes in S_n.

11. (a) Compute the conjugacy classes in A_5.

(b) Prove that A_5 is simple.

12. Let Ω be a set. An Ω-group is a group G together with a map

$$\Omega \times G \rightarrow G, \quad (\omega, g) \mapsto \omega g$$

such that

$$\omega(gh) = \omega(g) \omega(h)$$

for all $\omega \in \Omega$, $g, h \in G$. Note that this is equivalent to a map $\Omega \rightarrow \text{End}(G)$, where $\text{End}(G)$ denotes the set of all homomorphisms $G \rightarrow G$. Thus, G is a group with a collection of endomorphisms indexed by Ω. An Ω-group is also called a group with operators.
(a) Define suitable notions of Ω-subgroup and homomorphism of Ω-groups.

(b) An Ω-subgroup of an Ω-group G is normal if it is normal as a subgroup of G. Let N be such a subgroup. Show that G/N is an Ω-group in such a way that the canonical projection $G \rightarrow G/N$ is a homomorphism of Ω-groups.

(c) Briefly review the isomorphism laws and note that they hold in the context of Ω-groups.

(d) An Ω-group G is simple if it is nontrivial and the only normal Ω-subgroups are $\{1\}$ and G. An Ω-composition series of G is a subnormal series whose slices are simple Ω-groups. Review the Butterfly Lemma, Schreier’s Refinement Theorem, and the Jordan-Hölder Theorem, and note that they hold in the context of Ω-groups.

13. Let G be an Ω-group. Prove the following statements, or give a counterexample.

(a) The commutator subgroup $[G, G]$ is an Ω-subgroup.

(b) The center $Z(G)$ is an Ω-subgroup.

14. (a) Give an example of two nonisomorphic groups with isomorphic composition factors.

(b) Let S_1, \ldots, S_n be a collection of simple groups (not necessarily nonisomorphic). Construct a group with those groups for composition factors.