1. CLO, page 53, Problem 5.

2. CLO, page 73, Problem 3.

3. Suppose that k is an infinite field. Let $X \subset k^3$ be the set \{(t, t^2, t^3) : t \in k\}.

 (a) Use the parametrization to show that $z^2 - x^4y$ vanishes at every point of X.

 (b) Find a representation $z^2 - x^4y = h_1(y - x^2) + h_2(z - x^3)$, where $h_1, h_2 \in k[x, y, z]$.

 (c) Use the division algorithm to show that $I(X) = \langle y - x^2, z - x^3 \rangle$.

4. Let M be an $m \times n$ matrix with non-negative real entries, and let r_1, \ldots, r_m denote the rows of M. Assume that $\ker M \cap \mathbb{Z}^n = (0)$, that is, the only solution to $Mx = 0$, where x is a $n \times 1$ column vector with all integer entries, is the zero vector.

 Define a binary relation $>_M$ on the monomials in $R = k[x_1, \ldots, x_n]$ as follows: $x^a >_M x^b$ if there is an $\ell \leq m$ such that $a \cdot r_i = b \cdot r_i$, for $1 \leq i \leq \ell - 1$, and $a \cdot r_\ell > b \cdot r_\ell$.

 (a) Show that $>_M$ is a monomial ordering on (the monomials of) R.

 (b) If

 $$ M = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, $$

 show that $>_M$ equals $>_\text{grevlex}$ on $R = k[x, y, z]$.

 (c) If M is the $n \times n$ identity matrix, then $>_M$ equals $>_\text{lex}$.

5. Fix the lexicographic order on $R = k[x_1, \ldots, x_n]$, with $x_1 > x_2 > \ldots > x_n$. Let $A = (a_{ij})$ be an $m \times n$ matrix with entries in k, and let

 $$ f_i = a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n $$

 be the linear polynomials in R determined by the rows of A. Suppose that $B = (b_{ij})$ is the row-reduced echelon matrix determined by A, and let g_1, \ldots, g_r be the linear polynomials in R determined by the non-zero rows of B.

 (a) Prove that $\langle f_1, \ldots, f_m \rangle = \langle g_1, \ldots, g_r \rangle$.

 (b) Show that $G = \{g_1, \ldots, g_r\}$ is a Groebner basis of $\langle f_1, \ldots, f_m \rangle$.

6. How long did you spend on this problem set? And did you find it (a) too challenging, (b) just right, or (c) too easy?