Prediction of a success probability using Beta distributions as prior and posterior
(Example 4.7.5, p. 225)

Let \(X \) be the number of patients out of the first 40 in a clinical trial who have success as their outcome. Let \(P \) be the probability that an individual patient is a success.

The conditional p.f. of \(X \) given \(P = p \) is the binomial p.f. with \(n = 40 \)

\[
g_1(x|p) = \binom{40}{x} p^x (1 - p)^{40-x}.
\]

As prior distribution for \(P \), we use a uniform p.d.f. on the interval \((0, 1)\). This is a special case of a Beta distribution for \(\alpha = 1, \beta = 1 \). The Beta p.d.f. is

\[
x^{\alpha - 1} (1 - x)^{\beta - 1} / B(\alpha, \beta)
\]

where \(B(\alpha, \beta) \) is the normalizing constant which makes the integral one (\(B(\alpha, \beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx \)). It has been shown before (in the example Castaneda v. Partida, p. 304) that with a Beta \((\alpha, \beta)\) prior on \(P \), and a conditional binomial distribution with parameters \(n, p \) for \(X \), the posterior of \(P \) is again Beta with parameters

\[
\hat{\alpha} = \alpha + x, \hat{\beta} = n - x + \beta.
\]

Now let us compute \(E(P|x) \) which is the best predictor of \(P \) when \(P \) has its posterior distribution. Since this distribution is Beta \((\hat{\alpha}, \hat{\beta})\) with expectation

\[
E(P|x) = \frac{\hat{\alpha}}{\hat{\alpha} + \hat{\beta}}
\]

(cf. p. 306, the expectation of a Beta distribution) we obtain

\[
E(P|x) = \frac{\alpha + x}{\alpha + x + n - x + \beta} = \frac{1 + x}{1 + x + 40 - x + 1}
\]

\[
= \frac{x + 1}{42}.
\]

Note that this predictor is very close to the observed sample proportion of success from \(X \)

\[
\hat{p} = \frac{x}{40}.
\]

Compare this predictor with the best predictor of \(P \) before observing \(X \) which is just \(E(P) \) (expectation of its prior distribution). Since the prior distribution is uniform we have \(E(P) = 1/2 \), with M.S.E. (mean square error) of prediction

\[
E (P - E(P))^2 = Var(P) = \frac{1}{12}.
\]
A computation of the error of prediction when X can be observed gives

$$E[Var(P|X)] = E \left[E \left((P - E(P|X))^2 | X \right) \right] = 0.003968$$

which is much smaller than 1/12. Here we use the formula for the variance of the Beta distribution with parameters $(\tilde{\alpha}, \tilde{\beta})$ on p. 306: if P has this distribution (conditionally on X) then

$$Var(P|X) = \frac{\tilde{\alpha}\tilde{\beta}}{(\tilde{\alpha} + \tilde{\beta})^2 (\tilde{\alpha} + \tilde{\beta} + 1)} = \frac{(1 + x)(40 - x + 1)}{(42)^2 (43)}$$

hence

$$E(Var(P|X)) = \frac{E(X + 1)(41 - X)}{(42)^2 (43)}$$

To compute this, we note (p. 226) that the marginal p.f. of X is $f_1(x) = 1/41$ for $x = 0, \ldots, 40$, that is the uniform distribution on $0, \ldots, 40$.
