Problem 1. Make a square grid and find points that generate integral right triangles that are *good* approximations to 22.5 degree triangles and use them to generate Pythagorean triangles that are approximations to 45 degree triangles.

Problem 2. Consider the sequence where $p_{n+1} = q_n$, $q_{n+1} = 2q_n + p_n$, and $p_1 = 1$, $q_1 = 2$. Calculate the first few terms of the corresponding Pythagorean triple (by squaring the complex number). See if you can make some conjectures.

Problem 3. Solve the conjectures.

Problem 4. Find $\sqrt{2}i$ in the Gaussian integers.

Problem 5. If $a + bi$ is a Gaussian integer, where a and b are both odd, it always has a Gaussian integer as a factor over the Gaussian integers (other than 1, -1, i or $-i$). What is it?

Problem 6. If a and b are relatively prime odd integers, show that $(a^2 - b^2)/2$ and ab are relatively prime integers.