MATH 2220 HW4.

Due Wednesday 24 September

(1) Use the derivative to estimate the value of \(\cos(0.02 \cos(-0.03)) \).

Let \(f(x, y) = \cos(x \cos(y)) \). Let \(x_0 = (0, 0) \). Let \(x = (0.02, -0.03) \). We estimate \(f(x) \) by using the linear approximation:

\[
f(x_0) + \nabla f(x_0)(x - x_0)
\]

We have \(f_x = -\sin(x \cos(y)) \cos(y) \) and \(f_y = \sin(x \cos(y)) x \sin(y) \). Therefore \(f_x(0, 0) = 0 = f_y(0, 0) \) and \(f(0, 0) = 1 \). So

\[
f(x_0) + \nabla f(x_0)(x - x_0) = 1 + \begin{bmatrix} 0 & 0 \\ -0.03 & 0 \end{bmatrix} = 1.
\]

(2) Section 2.5 p.159-163

(a) \# 11.

Using the chain rule, first calculate \(D(f \circ T)(1, 0) \).

\[
D(f \circ T)(1, 0) = Df(T(1, 0)) DT(1, 0) = Df(1, \log \sqrt{2}) DT(1, 0).
\]

\[
Df(u, v) = (-\sin u \sin v, \cos u \cos v) \quad \text{and}
\]

\[
DT(s, t) = \begin{bmatrix} -t^2 \sin(t^2 s) & -2ts \sin(t^2 s) \\ \frac{2s}{\sqrt{1+s^2}} & 0 \end{bmatrix}
\]

So

\[
DT(1, 0) = \begin{bmatrix} 0 & 0 \\ \sqrt{2} & 0 \end{bmatrix}
\]

Therefore,

\[
Df(1, \log \sqrt{2}) DT(1, 0) = (-\sin(1) \sin(\log \sqrt{2}), \cos(1) \cos(\log \sqrt{2})) \begin{bmatrix} 0 & 0 \\ \sqrt{2} & 0 \end{bmatrix}
\]

which equals

\[
(\sqrt{2} \cos(1) \cos(\log \sqrt{2}), 0).
\]
The question just asks for \(\frac{\partial (f \circ T)}{\partial s}(1,0) \), which is the first entry of \(D(T \circ s)(1,0) \), ie.
\[
\sqrt{2} \cos(1) \cos(\log \sqrt{2}).
\]

(b) \# 15.

The question is asking for
\[
D(f \circ c)(0)
\]

By the chain rule, this equals
\[
Df(c(0))Dc(0) = \begin{bmatrix} e^{x+y} & e^{x+y} \\ e^{x-y} & -e^{x-y} \end{bmatrix} \bigg|_{(0,0)} c'(0).
\]
This in turn equals
\[
\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}
\]

(c) \# 24.

The problem is wrong to use \(\frac{\partial w}{\partial x} \) for two different things. The symbol \(\frac{\partial w}{\partial x} \) on the left hand side denotes the derivative of \(f(x, y, g(x, y)) \) with respect to \(x \), while on the right hand side it denotes the derivative of \(f(x, y, z) \) with respect to \(x \), treating \(z \) as a constant. These two things are not the same in general (try it with some nonconstant function \(g \) and some \(f \)). This is what causes the problem.

(3) Section 2.6 p.171-173

(a) \# 4(b).

The surface is given by \(g(x, y, z) = 0 \) where \(g(x, y, z) = y^2 - x^2 - 3 \). Then \(\nabla g = (-2x, 2y, 0) \). The equation of the tangent plane is therefore
\[
(-2, 4, 0) \cdot (x - 1, y - 2, z - 8) = 0.
\]

(b) \# 14(a).

The directional derivative is \(\nabla f \cdot v \) (there is no need to normalize \(v \) since it is already a unit vector).
\[
\nabla f = (y^2 + z^3, 2xy + 2yz^3, 3y^2z^2 + 3z^2x)
\]
at $(4, -2, -1)$, this has the value $(3, -12, 24)$. The answer is therefore $3/\sqrt{14} - 36/\sqrt{14} + 48/\sqrt{14}$.

(c) # 15.

(4) The surface of a mountain is given by the set of points (x, y, z) in \mathbb{R}^3 satisfying $z = 20 - (\frac{x}{10})^2 - (\frac{y}{20})^4$ and $x, y, z \geq 0$. Klaus is at the point $(10, 20, 18)$ and he wants to toboggan down the mountain in the steepest direction possible. In which direction should he go?

Let $z = f(x, y) = 20 - (\frac{x}{10})^2 - (\frac{y}{20})^4$. Then the direction of steepest descent is $-\nabla f(10, 20) = -(-\frac{1}{10}, 2\frac{10}{10}, -\frac{1}{20}(\frac{20}{20})^3) = (\frac{1}{5}, \frac{1}{5})$. In other words, Klaus should go due northeast.

(5) A 2×2 matrix of real numbers

$$
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
$$

can be identified with the point $(a, b, c, d) \in \mathbb{R}^4$. We can therefore define a map $f : \mathbb{R}^4 \to \mathbb{R}^4$ by $f(A) = A^2$, the square of the matrix A. Calculate the derivative of f at an arbitrary point $B \in \mathbb{R}^4$ (also regarded as a matrix).

Write f as

$$f(a, b, c, d) = (a^2 + bc, ab + bd, ac + cd, cb + d^2).$$

Then

$$Df(a, b, c, d) =
\begin{bmatrix}
2a & c & b & 0 \\
b & a + d & 0 & b \\
c & 0 & a + d & c \\
0 & c & b & 2d
\end{bmatrix}$$