You are NOT allowed calculators or the text. With the exception of True/False questions, JUSTIFY ALL ANSWERS, SHOW ALL WORK!

1) (a) (10 points) Find a basis for the subspace of all vectors in \mathbb{R}^4 orthogonal to both $(1, 0, 2, 3)$ and $(1, 0, 0, -1)$.
(b) (8 points) Let $W \subseteq \mathbb{R}^4$ be the subspace spanned by $\{(0, 2, 0, 7), (1, 1, 1, 4), (-1, 1, -1, 3), (3, 1, 3, 5)\}$. What is the dimension of W? Find a matrix A whose left null space is exactly W.

2) (8 points) a) Find the matrix P that projects vectors $\vec{v} \in \mathbb{R}^3$ onto the plane $x + 2y - z = 0$.
b) (8 points) Express the vector $(-2, -2, 1)$ as the sum of a vector in the plane from part (a), and a vector normal to that plane.

3) For the questions below, just write the complete word 'TRUE' or 'FALSE' or leave it blank. No explanations are needed for this question only. A correct answer is worth 3 points, leaving a question blank is worth 0 points, and an incorrect answer is worth -3 points.
(a) (3/0/−3 points) For any 2×3 matrix A, the null space of A is perpendicular to the null space of A^T.
(b) (3/0/−3 points) Let $\vec{v}_1, \vec{v}_2, \vec{v}_3$ be non-zero vectors in \mathbb{R}^3. If every pair of \vec{v}_1, \vec{v}_2 and \vec{v}_3 are perpendicular, then $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is a basis of \mathbb{R}^3.
(c) (3/0/−3 points) Every (positive dimensional) subspace S of \mathbb{R}^n has an orthonormal basis.
(d) (3/0/−3 points) If \vec{u} and \vec{v} are 3×1, then $\vec{u}\vec{v}^T$ has determinant 0.

4) (16 points) Find the least squares plane of best fit (in \mathbb{R}^3) for the four points $(1, 0, 0), (0, 1, 0), (1, 1, 3), (1, 2, 6)$ and that passes through the origin.

5) (a) (7 points) Find the determinant of the matrix
$$
\begin{bmatrix}
1 & 0 & 1 & 0 \\
7 & 1 & 4 & 1 \\
1 & 0 & 7 & 0 \\
0 & 3 & 6 & 2
\end{bmatrix}.
$$
(b) (8 points) Assume that A, B, and C are invertible 3×3 matrices, $\det A = a$, $\det B = b$, and $\det C = c$ where $c \neq 0$. Find, with explanation, $\det(A^3)$, $\det(5A)$, $\det(C^T)$ and $\det(A^TB^2C^{-1})$.
(c) (6 points) In terms of x and a, find the determinant of
$$
\begin{bmatrix}
 x + a & x + 2a & x + 3a \\
 x + 2a & x + 3a & x + 4a \\
 x + 4a & x + 5a & x + 6a
\end{bmatrix}.
$$

6) (a) (9 points) If P is a projection matrix that projects vectors $\vec{v} \in \mathbb{R}^n$ onto a subspace $S \subseteq \mathbb{R}^n$, prove that $(I - P)^2 = I - P$, where I is the $n \times n$ identity matrix.
b) (8 points) Give an example of a 3×3 matrix A whose columns are orthonormal and A has exactly one entry equal to 0.