1. Degree

Let $S^1 := \{e^{2\pi i \theta} \mid \theta \in \mathbb{R}\} \subset \mathbb{C}$. We define the degree of a continuous map $S^1 \to S^1$ as follows. Let $x_0 \in S^1$ and let α be a path from $1 \in S^1$ to x_0.

1. Show that if γ is a generator of $\pi_1(S^1, 1)$, then $\hat{\gamma}(\gamma)$ is a generator of $\pi_1(S^1, x_0)$. See Appendix *1.

Solution: Let $[f] \in \pi_1(S^1, x_0)$. Then $\hat{\gamma}^{-1}([f]) = [\alpha] * [f] * [\bar{\alpha}] \in \pi_1(S^1, 1)$. Since γ is a generator for $\pi_1(S^1, 1)$, there is some n such that $[\alpha] * [f] * [\bar{\alpha}] = \gamma^n$ which implies $[f] = [\bar{\alpha}] * \gamma^n * [\alpha] = (\bar{\alpha} * \gamma * [\alpha])^n = \hat{\gamma}(\gamma)^n$.

2. Show that $\hat{\gamma}(\gamma)$ depends only on x_0 but not on paths α.

Solution: Take another path β from 1 to x_0. Then $\beta * \bar{\alpha}$ is a loop at 1. Now $\hat{\beta}(\gamma) = [\bar{\beta}] * \gamma * [\beta] = [\bar{\beta}] * [\beta * \bar{\alpha}] * \gamma * [\beta * \bar{\alpha}]^{-1} * [\beta] = [\bar{\beta}] * [\beta] * [\bar{\alpha}] * \gamma * [\alpha] * [\bar{\beta}] * [\beta] = \hat{\alpha}(\gamma)$.

By (2), it is OK to write $\gamma_{x_0} := \alpha[\gamma]$ for a path α from 1 to x_0. Now let $h : S^1 \to S^1$ be a continuous map. Let $x_0 \in S^1$ and let $x_1 := h(x_0)$. Define degree of h to be an integer d such that

$$h_*(\gamma_{x_0}) = (\gamma_{x_1})^d.$$

It is well-defined because, by (1), γ_{x_1} is a generator of $\pi_1(S^1, x_1)$ respectively.

3. Show that d is independent of the choice of x_0.

Solution: Let $y_0 \in S^1$ and let β be a path from x_0 to y_0. Let $y_1 := h(y_0)$, then $\beta' := h \circ \beta$ is a path from x_1 to y_1.

$$\gamma_{y_1} = [\bar{\beta}'] * \gamma_{x_1} * [\beta']$$

$$h_*(\gamma_{y_0}) = h_(\gamma_{y_0}) * [\beta'] = [\bar{\beta}'] * h_*(\gamma_{y_0}) * [\beta'] = [\bar{\beta}'] * (\gamma_{x_1})^d * [\beta'] = (\gamma_{x_1})^d.$$

4. Show that d is independent of the choice of γ.

Solution: By *1, a generator is either γ or γ^{-1}. We use γ^{-1}, then

$$(\gamma^{-1})_{x_0} = (\gamma_{x_0})^{-1}, \quad (\gamma^{-1})_{x_1} = (\gamma_{x_1})^{-1}.$$

Thus $h_*(\gamma_{y_0})^{-1} = ((\gamma_{x_1})^d)^{-1} = ((\gamma_{x_1})^{-1})^d$.

By (3) and (4), we have defined the degree of a map h, which is independent of all choices. Now we consider the properties of this degree:

5. Show that if $h, k : S^1 \to S^1$ are homotopic, they have the same degree.

Solution: It follows from Theorem 11.1 Lecture Notes.

6. Show that $\deg h \circ k = \deg h \cdot \deg k$.

Solution: It follows from (8) and (7).
(7) Compute the degree of the map $h(z) = z^n$ where $n \in \mathbb{Z}$.

Solution: HW 9 (5).

(8) (Optional) Show that if $h, k : S^1 \to S^1$ have the same degree, then they are homotopic.

Solution:
- Consider $h_\ast : \pi_1(S^1, 1) \to \pi_1(S^1, h(1))$ and $k_\ast : \pi_1(S^1, 1) \to \pi_1(S^1, k(1))$. By the assumption, there is n such that $h_\ast(\gamma) = \gamma^p_{h(1)}$ and $k_\ast(\gamma) = \gamma^p_{k(1)}$.
- Let $\gamma := [p_0]$ where $p : \mathbb{R} \to S^1, t \mapsto e^{2\pi it}$ is the standard map and $1 := [0, 1]$. Consider the following lifting diagram,

$\xymatrix{ I \ar[r]^{\tilde{p}_0} & S^1 \ar[r]^h & S^1 \ar[r]^{p} & \mathbb{R} \ar[d]_p & \tilde{h} \circ \tilde{p}_0 \ar@{|-}[rrrr] & & & k \circ \tilde{p}_0 \ar@{|-}[rrrr] & & & \mathbb{R} \ar[d]_p \\
1 \ar[r] & \tilde{p}_0 \ar[r]_{\tilde{h} \circ \tilde{p}_0} & S^1 \ar[r]_{h} & S^1 \ar[r]_{k} \ar[u]^{\tilde{p}_0} & \mathbb{R} \ar[u]_p & & & \mathbb{R} \ar[u]_p & & & \mathbb{R} \ar[u]_p}
$

$\tilde{h} \circ \tilde{p}_0$ and $k \circ \tilde{p}_0$ are the lifts of $h \circ p|_I$ and $k \circ p|_I$ at $h_0 \in p^{-1}(h(1))$ and $k_0 \in p^{-1}(k(1))$ respectively. Let $h_1 := \tilde{h} \circ \tilde{p}_0(1)$ and $k_1 := k \circ \tilde{p}_0(1)$.
- Since $h_\ast(\gamma) = [h \circ p|_I] = \gamma^p_{h(1)}$ and $k_\ast(\gamma) = [k \circ p|_I] = \gamma^p_{k(1)}$, we have $h_1 - h_0 = k_1 - k_0 = n$.
- I wanted to find a path-homotopy between $h \circ p|_I$ and $k \circ p|_I$, but because the starting points and ending points are different, I can find it. So I will shift one of them. Define $\tilde{h} \circ \tilde{p}_0(s) := \tilde{h} \circ \tilde{p}_0(s) - h_0 + k_0$.

Now it is a path from k_0 to k_1. You can check it by evaluating at 0 and 1. Thus there is a path-homotopy F from $h \circ p|_I$ to $k \circ p|_I$, because \mathbb{R} is a contractible space.
- Consider $\tilde{h}(x) := h(x) \cdot e^{2\pi it(k_0 - h_0)}$. Then $\tilde{h} \circ \tilde{p}_0$ is the lift of $h \circ p|_I$ at k_0. Then we check that $p \circ F$ is a path homotopy from $\tilde{h} \circ \tilde{p}_0$ to $k \circ \tilde{p}_0$. Now since $p \circ F$ is a path-homotopy, it factors through (p, id), giving a homotopy F from \tilde{h} to k.
- Now the homotopy from h to \tilde{h} is easy to find:

$G(x, t) := h(x)e^{2\pi it(k_0 - h_0)}$.
- By constructing F and G, we have shown that h is homotopic to k.

(5) says the degree is a homotopy invariant, i.e. if h, k have the different degrees, they cannot be homotopic to each other. Together with (7) and (8), it classifies all homotopy equivalence classes of maps $S^1 \to S^1$. (6) says associating degrees have a certain algebraic structure.

Appendix

*1 An infinite cyclic group G is a group isomorphic to $(\mathbb{Z}, +)$. We say $g \in G$ is a generator, if $G = \{g^n | n \in \mathbb{Z}\}$. If g is a generator, then g^{-1} is also a generator and any generator is either g or g^{-1}.