Write the proofs in complete sentences.

1. Let $p : E \to B$ be a covering map. Let f, g be composable paths in B, i.e. $f(1) = g(0)$. If \tilde{f}, \tilde{g} are composable paths lifted from f, g, then show that $\tilde{f} \circ \tilde{g}$ is a lifting of $f \circ g$.

2. Show that the fundamental group of a torus $S^1 \times S^1$ is isomorphic to $\mathbb{Z} \times \mathbb{Z}$ as groups (additive on $\mathbb{Z} \times \mathbb{Z}$). (Hint; generalized the proof of $\pi_1(S^1, b_0) \cong \mathbb{Z}$.)

Solution

Let $S^1 := \{e^{i\theta}, \theta \in \mathbb{R}\}$ and $p : \mathbb{R} \to S^1, \theta \mapsto e^{2\pi i \theta}$. Let $p := (p, p) : \mathbb{R} \times \mathbb{R} \to S^1 \times S^1$.

Let $[f], [g] \in \pi_1(S^1 \times S^1, (1, 1))$. Let \tilde{f}, \tilde{g} be the lifts of f and g at $(0, 0)$ along p and $f(1) = (n_1, m_1)$ and $g(1) = (n_2, m_2)$. We need to show that if $f \circ g$ is the lift of $f \circ g$ at $(0, 0)$ along p, then $\tilde{f} \circ \tilde{g}(1) = (n_1 + n_2, m_1 + m_2)$. Consider $\tilde{g}_1(s) := (n_1, m_1) + \tilde{g}(s)$. Then \tilde{g} is the lift of g at (n_1, m_1) along p by the invariance of p under the shifting ($p(x + (n + m)) = p(x)$).

Since $\tilde{g}_1(0) = (n_1, m_1)$, by (1), $\tilde{f} \circ \tilde{g} = \tilde{f} \circ \tilde{g}_1$. Thus $\tilde{f} \circ \tilde{g}(1) = \tilde{g}_1(1) = (n_1 + n_2, m_1 + m_2).

3. A group G acts on a set X from right if there is an action map $G \times X \to X, (g, x) \mapsto gx$ which satisfies $x = x1_G$ and $x(gh) = (xg)h$. Show that there is a natural right action of $\pi_1(B, b_0)$ on $p^{-1}(b_0)$ if $p : E \to B$ is a covering map. (Hint: use ϕ_{e_0} in Section 10.2 [L].)

4. Let B be a simply-connected space. Then any covering map $p : E \to B$ with E path-connected, is a homeomorphism.

5. Show that the map $p : S^1 \to S^1, z \mapsto z^n$ induces $p_* : \pi_1(S^1, b) \to \pi_1(S^1, b), [f] \mapsto [f]^n$. In other words, through the isomorphism in Section 10.4 [L], $\mathbb{Z} \to \mathbb{Z}, m \mapsto nm$.

Solution Under the isomorphism in Theorem 10.8 [L], it is enough to prove $p_*(1) = n$, since \mathbb{Z} is generated by 1. More concretely, it is enough because $f(m) = f(1 + \cdots + 1) = f(1) + \cdots + f(1) = mf(1) = mn$. Let $S^1 := \{e^{2\pi i \theta}\}$ and $\tilde{p} : \mathbb{R} \to S^1, \theta \mapsto e^{2\pi i \theta}$. Then it is clear that $\tilde{p}_1 : I \to S^1$ is a loop at 1 and its lift at 0 $\in \mathbb{R}$ is the inclusion $j : 1 \hookrightarrow \mathbb{R}$.

Thus $\phi_0([\tilde{p}_1]) = j(1) = 1$. $p_*(1) = p_*([\tilde{p}_1]) = [p \circ \tilde{p}_1]$. Then the lift of $p \circ \tilde{p}_1$ at 0 is $p \circ \tilde{p}_1 : I \to \mathbb{R}, s \mapsto ns$ (Check this!). Now $p \circ \tilde{p}_1(1) = n$.

References

