(1) (Set theory) Let \(\mathbb{R} \) be the set of real numbers. Consider the map \(f : \mathbb{R} \to \mathbb{R} \) defined by \(f(x) := x^2 \). Find a maximal subset \(M \) of \(\mathbb{R} \) such that the restriction map \(f|_M \) is injective, i.e. find a subset \(M \) of \(\mathbb{R} \) such that \(f|_M \) is injective and there is no subset of \(\mathbb{R} \) containing \(M \) properly.

Solution: \(\mathbb{R}_{\geq 0} = \{ x \in \mathbb{R} \mid x \geq 0 \} \) or \(\mathbb{R}_{\leq 0} = \{ x \in \mathbb{R} \mid x \leq 0 \} \).

(2) (Set theory) Let \(g : X \to Y \) be a map. Let \(A \subset X \) and \(B \subset Y \) be subsets. If \(g \) is injective, then we can show that \(A = g^{-1}(g(A)) \). The proof goes as follows:

- To prove the equality, we need to show that (a) \(A \subset g^{-1}(g(A)) \) and (b) \(g^{-1}(g(A)) \subset A \).

 (a) Let \(a \in A \). We need to show that \(a \in g^{-1}(g(A)) \). By the definition of pre-image, we have

 \[
 a \in g^{-1}(g(A)) \quad \text{if and only if} \quad g(a) \in g(A).
 \]

 The RHS is obviously true and hence the LHS, \(a \in g^{-1}(g(A)) \), is true.

 (b) Let \(c \in g^{-1}(g(A)) \subset X \) and then we need to show \(c \in A \). Again by def of pre-image,

 \[
 c \in g^{-1}(g(A)) \quad \text{if and only if} \quad g(c) \in g(A).
 \]

 RHS means that there is \(a \in A \) such that \(g(a) = g(c) \). However, by the injectivity of \(g \), we have \(c = a \).

 Thus \(c \in A \).

Now prove that, if \(g \) is surjective, then \(g(g^{-1}(B)) = B \).

Solution: Let \(b \in B \), then clearly by subjectivity \(b \in g(g^{-1}(B)) \), so \(B \subset g(g^{-1}(B)) \). Now let \(c \in g(g^{-1}(B)) \), then \(c = g(a) \) for some \(a \in g^{-1}(B) \) and so \(c = g(a) \in B \), which gives the other inclusion.

(3) (Set theory) Let \(f : X \to Y \) be a map and let \(A_1, A_2 \subset X \) be subsets.

(3.1) Prove the following

(a) \(f(A_1 \cup A_2) \supset f(A_1) \cup f(A_2) \).

(b) \(f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2) \); the equality holds if \(f \) is injective.

(3.1) Define a map \(f : \mathbb{Z} \to \{0, 1\} \) by sending even integers to 0 and odd integers to 1. Find subsets \(A_1 \) and \(A_2 \) of \(\mathbb{Z} \) such that \(f(A_1 \cap A_2) \neq f(A_1) \cap f(A_2) \).

Solution:

(3.1) (a) Let \(y \in f(A_1) \cup f(A_2) \). If \(y \in f(A_1) \), then \(\exists x \in A_1 \) such that \(f(x) = y \). Since \(x \in A_1 \), we have \(x \in A_1 \cup A_2 \), so \(y \in f(A_1 \cup A_2) \). Same argument works if \(y \in f(A_2) \).

(b) Let \(y \in f(A_1 \cap A_2) \). Then \(\exists x \in A_1 \cap A_2 \) such that \(f(x) = y \). Since \(x \in A_1 \) and \(x \in A_2 \), we get \(y \in f(A_1) \cap f(A_2) \).

Now assume \(f \) is injective and let \(y \in f(A_1) \cap f(A_2) \). Since \(f \) is injective there is a unique pre-image of \(y \), say \(f(x) = y \). Then \(x \in A_1 \) and \(x \in A_2 \) and so \(y \in f(A_1 \cap A_2) \).

(3.2) The key is that \(f \) is not injective so that two points can go to the same point under \(f \). For example, 0 and 2 go to 0 under \(f \). Let \(A_1 = \{0\} \) and \(A_2 = \{2\} \). See that this gives an example such that \(f(A_1 \cap A_2) \neq f(A_1) \cap f(A_2) \).
(4) **(Topology)** A discrete topology on a set X is given by the collection \mathcal{T} of all subsets. Prove that it satisfies all axioms.

Solution: Clear by definition of the power set.

(5) **(Topology)** Let \mathbb{R} be the set of real numbers. Define open sets in \mathbb{R} by subsets that are complement of finite subsets or the whole set \mathbb{R}. Check that it defines a topology in \mathbb{R} (known as the finite complement topology).

Solution:

(T1) $\mathbb{R} = \emptyset \in \mathcal{T}$ and $\emptyset = \mathbb{R} \in \mathcal{T}$.

(T2) Let $U_i \in \mathcal{T}$ and say $U_i^C = V_i$ for all i. Note that V_i are finite subsets or the whole set \mathbb{R}. Let $U = \bigcup U_i$ and let $V = U^C = (\bigcup U_i)^C = \bigcap (U_i^C) = \bigcap V_i$. If all of the V_i were \mathbb{R}, then $V = \mathbb{R}$ and $U \in \mathcal{T}$, otherwise some V_i is finite and so V is finite, giving $U \in \mathcal{T}$.

(T3) Again let $U_i \in \mathcal{T}$ and say $U_i^C = V_i$ for $1 \leq i \leq n$. Again V_i are finite subsets or the whole set \mathbb{R}. Let $U = \bigcap_1^n U_i$ and let $V = U^C = (\bigcap_1^n U_i)^C = \bigcup_1^n (U_i^C) = \bigcup_1^n V_i$. If any of the V_i were \mathbb{R}, then $V = \mathbb{R}$ and $U \in \mathcal{T}$, otherwise V is finite since we are taking finite union of finite sets and hence $U \in \mathcal{T}$.

(6) **(Topology)** Show that $\mathbb{R} - \{1/n | n = 1, 2, \cdots\}$ is not an open set in the standard topology of \mathbb{R}. You are only allowed to use the materials from Section 1 of the lecture notes.

Solution: Let $A := \mathbb{R} - \{1/n | n = 1, 2, \cdots\}$. Notice that $0 \in A$. To show A is open, we need to prove the condition (G1) in Lemma 1.5. [L]. The standard topology is given by $\mathcal{B} = \{ \text{ all open intervals} \}$ (Example 1.7 [L]). Take any open interval containing 0, say (a, b) where $a < 0 < b$. We can find n such that $0 < 1/n < b$, so that $1/n \in (a, b)$. Thus any interval (a, b) is not a subset of A.

(7) **(Topology)** Let (X, \mathcal{T}) be a topological space. Prove that a collection \mathcal{B} of open sets is a basis for \mathcal{T} if and only if for every $U \in \mathcal{T}$ and $x \in U$, there is $B \in \mathcal{B}$ such that $x \in B \subseteq U$.

Solution: One direction is the content of Lemma 13.2 of [M]. Please see the proof written there. The other direction is the straightforward consequence of the condition (G1) in the Lemma 1.5 of [L].

References

