1 \(q \)-binomial coefficients

1.1 Connection to partitions

Let \(a_l = \# \{\text{partitions } \lambda \text{ of } l | \text{the Young diagram of } \lambda \text{ fits in a box of dimensions } k \times (n-k)\} \).

Theorem 1

\[
\binom{n}{k}_q = \sum_{l=0}^{k(n-k)} a_l q^l
\]

Proof: Fix a flag \(E_0 \subset E_1 \subset \ldots \subset E_n \) of \(\mathbb{F}_q^n \). Given a \(k \)-subspace \(V \), let \(d_i = \dim(V \cap E_i) \), and write \(d = (d_0, d_1, \ldots d_n) \).

Now, given \(d \), let \(f(d) = \#(k \text{-subspaces } V \subset \mathbb{F}_q^n | \dim V \cap E_i = d_i, i \in \{0, \ldots n\}) \).

Lemma 2 \(f(d) = q^{m_1-1}q^{m_2-2} \ldots q^{m_k-k}, \text{ where } m_i = \min\{j | d_j = i\} \)

Recall from last time: \#\{lines \(\{0\} \in L \subset V | L \not\subset H\} = [n]_q - [n-1]_q = q^{n-1}, \text{ where } H \text{ is a hyperplane in } \mathbb{F}_q^n \).

We want to count the number of ways to choose a \(k \)-subspace \(V \).

Define \(V_i = V \cap E_{m_i} \), where \(\dim V_i = i \). Choosing \(V \) is the same as choosing the sequence \((V_i)_{0 \leq i \leq k} \), since the intersections of \(V \) with our flag define \(V \).

To choose \(V_1 = V \cap E_{m_1} \) is to choose a line in \(E_{m_1} \) that is not contained in \(E_{m_1-1} \). As we recalled, there are \(q^{m_1-1} \) ways to do this.

To choose \(V_2 = V \cap E_{m_2} \) is to choose a line in \(E_{m_2}/V_1 \) that is not contained in \(E_{m_2-1}/V_1 \). There are \(q^{m_2-2} \) ways to do this.

In general, to choose \(V_j = V \cap E_{m_j}/V_{j-1} \) is to choose a line in \(E_{m_j}/V_{j-1} \) that is not contained in \(E_{m_j-1}/V_{j-1} \), and there are \(q^{m_j-j} \) ways to do this.

—
So \([n \atop k]_q\) is the number of \(k\)-subspaces of \(\mathbb{F}_q^n\). But this is equal to

\[
\sum_{d} f(d)
\]

where the sum ranges over all sequences \(d = (d_0, \ldots, d_n)\) with \(0 = d_0 \leq \cdots \leq d_n = k\) and \(d_{i+1} - d_i \leq 1\) for all \(i\).

Given a sequence \(d\), we form a southwest lattice path, where step \(i\) is

- S, if \(d_{i+1} = d_i\), and
- W, if \(d_{i+1} = d_i + 1\).

starting at \((k, 0)\) and ending at \((0, k-n)\).

This draws a Young diagram for a partition we can call \(\lambda\); then \(|\lambda|\) is the number of boxes above the lattice path, which is equal to

\[
c_1 + c_2 + \ldots + c_k
\]

where \(c_j\) is the height of column \(j\).

Note that \(c_i = m_i - i\), since all but \(c_i\) of the steps before column \(i\) are westward.

So

\[
\begin{align*}
\binom{n}{k}_q &= \sum_{d} f(d) = \sum_{\lambda \in \text{box}} q^{\lambda} = \sum_{l=0}^{k(n-k)} a_l q^l
\end{align*}
\]

1.2 The \(q\)-Binomial Theorem

So there’s this Binomial Theorem \((x+y)^n = \sum_{k=0}^{n} \binom{n}{k}_q x^k y^{n-k}\) and we might ask whether we can come up with an analogous formula in \(q\)-binomial coefficients.

As it turns out, we can. Consider the algebra \(A = \mathbb{Q}[q][x, y] / (yx-qxy)\), the polynomials in three variables \(q, x, y\) over \(\mathbb{Q}\) in which \(q\) commutes with everything but \(yx = qxy\). Say we try to do some binomial expansion:
\[(x + y)^3 = (x + y)(x + y)(x + y) = xxx + xxy + xyx + yxx + xyy + yxy + yyy = xxx + xxy + qxx + qxqxy + xyy + qxyqy + q(qxy)y + yyy = x^3 + x^2y + qx^2y + qy^2 + qxy^2 + qxxy^2 + y^3 = x^3 + (1 + q + q^2)x^2y + (1 + q + q^2)xy^2 + y^3 = \sum_{k=0}^{3} \binom{n}{k} x^k y^{n-k}\]

As it turns out, this is true in general (see homework #5).

1.3 Counting irreducible monic polynomials

Question 3 How many irreducible monic polynomials \(f(x) = a_0 + a_1 x + \ldots + a_n x^n \) of degree \(n \) are there in \(\mathbb{F}_q[x] \)?

Say we make a list \(f_1(x), f_2(x), \ldots \) of all the monic irreducible polynomials in \(\mathbb{F}_q[x] \), and let \(d_i = \text{deg}(f_i(x)) \). By unique factorization, any monic polynomial \(f(x) \in \mathbb{F}_q[x] \) can be written uniquely as a product \(\prod_{i \geq 1} f_i(x)^{a_i} \) (where all but finitely many \(a_i \) are 0).

This leads to a bijection between the set of monic polynomials of degree \(n \) and the set of sequences \((a_1, a_2, \ldots)\) such that \(a_1 d_1 + a_2 d_2 + \ldots = n \).

In other words, partitions of \(n \) into piles of size \(d_i \).

We can write a generating function for these partitions:

\[
\frac{1}{(1 - x^{d_1})(1 - x^{d_2})\ldots}
\]

Then, since the number of monic polynomials in \(\mathbb{F}_q[x] \) of degree \(n \) in just \(q^n \), our bijection tells us that we have

\[
\frac{1}{(1 - x^{d_1})(1 - x^{d_2})\ldots} = \sum_{n=0}^{\infty} q^n x^n = \frac{1}{1 - qx}
\]
Taking the log of both sides:
\[
\log \frac{1}{1-x^{d_1}} + \log \frac{1}{1-x^{d_2}} + \ldots = \log \frac{1}{1-qx} = \sum_{n \geq 1} \frac{(qx)^n}{n}
\]

We can rewrite the left hand side as
\[
\sum_{d=1}^{\infty} N_d \log \frac{1}{1-x^d}
\]
where \(N_d\) is the number of irreducible monic polynomials of degree \(d\) over \(\mathbb{F}_q\), since there are \(N_d\) terms in the left hand sum for which \(d_i = d\). And
\[
\sum_{d=1}^{\infty} N_d \log \frac{1}{1-x^d} = \sum_{d=1}^{\infty} N_d \sum_{j \geq 1} x^{dj/j} = \sum_{n \geq 1} \sum_{d \mid n} N_d \frac{x^n}{n/d}
\]
where the second equality is obtained by substituting \(n\) for \(d_j\).

Equating coefficients:
\[
\sum_{n \geq 1} \sum_{d \mid n} \frac{N_d}{n/d} x^n = \sum_{n \geq 1} \frac{(qx)^n}{n}
\]
\[
\implies \frac{q^n}{n} = \frac{1}{n} \sum_{d \mid n} dN_d
\]
\[
q^n = \sum_{d \mid n} dN_d
\]
Möbius Inversion
\[
\implies nN_n = \sum_{d \mid n} q^d \mu \left(\frac{n}{d} \right)
\]
\[
N_n = \frac{1}{n} \sum_{d \mid n} \mu \left(\frac{n}{d} \right) q^d.
\]

Hey, this expression on the right is equal to the number of rotation classes of primitive necklaces of length \(n\), using \(q\) colors of beads!

Example 4 If \(p\) is a prime, then \(N_p = \frac{1}{p} (q^p - q)\).
2 Hyperplane Arrangements

2.1 Definitions

Definition 5 Given a vector space V with $\dim V = l$, a hyperplane arrangement is a finite set of hyperplanes $A = \{H_1, \ldots, H_n | H_i \text{ is an } (l-1)\text{-dimensional subspace of } V\}$

A is defined over \mathbb{Z} if $H_i = \{x \in V | \sum c_{ij}x_i = b_i; b_i, c_{ij} \in \mathbb{Z}\}$—that is, if the equations defining the H_i have integer coefficients.

Note that we implicitly take a basis for V in this definition.

Definition 6 The intersection poset of A is the set of subspaces $L(A) = \{\bigcap_{i \in I} H_i | I \subseteq [n]\}$ ordered by inclusion.

Note that \emptyset is not actually a subspace of V, so $L(A)$ may not have a minimal element. It does have a maximal element, V.

Definition 7 A is central if every H_i passes through the origin; i.e., if $b_i = 0$ in every defining equation.

On the other hand, if A is central, then it does have a minimal element, $\bigcap_{i=1}^n H_i$, which contains 0 and is thus nonempty. In this case $L(A)$ is actually a lattice, where $H_i \cap H_j = H_i \cap H_j$.

2.2 Connection to finite fields

Given a hyperplane arrangement which is defined over \mathbb{Z}, we can take the defining equations $\sum c_{ij}x_i = b_i \pmod q$ to get a hyperplane arrangement over \mathbb{F}_q.

Question 8 How many points of \mathbb{F}_q^l are in the complement of the arrangement? i.e., what is $\# (\mathbb{F}_q^l - \bigcup_{i=1}^n H_i)$?
We can use the Principle of Inclusion-Exclusion:

\[q^l - \sum_{i=1}^{n} q^{l-1} + \sum_{i,j, H_i \cap H_j \neq \emptyset} q^{l-2} - \ldots \]

That doesn’t seem to be very productive. In general, when we see complicated subscripts on sums like we have here, that’s a sign that we should try something else, like Möbius Inversion.

Let \(\chi(A, q) = \#(\mathbb{F}_q^l - \bigcup_{i=1}^{n} H_i) \) be the size of the complement of \(A \).

Lemma 9

\[\chi(A, q) = \sum_{X \in L(A)} \mu(X, \hat{1}) q^{\dim X} \]

Recall that \(\hat{1} = V = \mathbb{F}_q^l \).

Proof: For \(Y \in L(A) \), let \(f(Y) = \#\{ v \in \mathbb{F}_q^l \mid v \in Y \text{ and } v \notin Z \text{ for } Z < Y \} \).

Then \(\chi(A, q) = f(\hat{1}) \), and

\[\sum_{Z \leq Y} f(Z) = \#Y = q^{\dim Y} \]

Define \(g(Y) := q^{\dim Y} \).

Invert:

\[f(Y) = \sum_{Z \leq Y} \mu(Z, Y) q^{\dim Y} \]

Let \(Y = \hat{1} \); then we are done. \(\square \)

The polynomial \(\chi(A, q) \) is called the characteristic polynomial of \(A \).

Example 10 The **Braid arrangement** is \(B_n := \{ H_{ij} \mid 1 \leq i < j \leq n \} \), \(H_{ij} = \{ x_i = x_j \} \) in \(\mathbb{F}_q^n \).

\[\chi(B_n, q) = \# \{ v \in \mathbb{F}_q^n \mid \text{all the coordinates } v_1, \ldots, v_n \text{ are distinct} \} = \binom{q}{n} n! = q(q-1)(q-2)\ldots(q-n+1) \]

\(\square \)