Solutions to Assignment 11

Barr 4.6: 1, 2.

1. (a) Following Example 4.6.1 (Page 307), we find that $\sigma = 70$.
 (b) Given $(\tilde{x}, \tilde{\sigma}) = (54, 89)$, Bob regards the pair to be likely to be authentic since $54^7 \mod 91 = 89$.

2. (a) Alice’s encrypted pair is (185, 21).
 (b) The original plaintext and signature are: $\tilde{x} = 44$, $\tilde{\sigma} = 86$. This is a valid signature pair since $\tilde{\sigma}^{\tilde{x}} \mod 91 = 86^7 \mod 91 = 44$.

Barr 4.7: 1*, 3, 7*

1.

<table>
<thead>
<tr>
<th>n</th>
<th>$n^2 \mod 39$</th>
<th>n</th>
<th>$n^2 \mod 39$</th>
<th>n</th>
<th>$n^2 \mod 39$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>13</td>
<td>13</td>
<td>26</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>14</td>
<td>1</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>15</td>
<td>30</td>
<td>28</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>16</td>
<td>22</td>
<td>29</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>17</td>
<td>16</td>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>18</td>
<td>12</td>
<td>31</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>19</td>
<td>10</td>
<td>32</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>33</td>
<td>36</td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td>21</td>
<td>12</td>
<td>34</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>22</td>
<td>16</td>
<td>35</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>22</td>
<td>23</td>
<td>22</td>
<td>36</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>24</td>
<td>30</td>
<td>37</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>27</td>
<td>25</td>
<td>1</td>
<td>38</td>
<td>1</td>
</tr>
</tbody>
</table>
Thus,
(a) The solutions to \(x^2 \equiv 1 \pmod{39} \) are 1, 14, 25 and 38.
(b) The solutions to \(x^2 \equiv 4 \pmod{39} \) are 2, 11, 28 and 37.
(c) The solutions to \(x^2 \equiv 12 \pmod{39} \) are 18 and 21.

3. | n | \(n^2 \pmod{31} \) | n | \(n^2 \pmod{31} \) | n | \(n^2 \pmod{31} \) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>13</td>
<td>14</td>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>14</td>
<td>10</td>
<td>27</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>15</td>
<td>8</td>
<td>28</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>16</td>
<td>8</td>
<td>29</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>17</td>
<td>10</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>18</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>19</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>18</td>
<td>20</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>21</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>19</td>
<td>22</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>23</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>28</td>
<td>24</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>20</td>
<td>25</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thus,
The solutions to \(x^2 \equiv 1 \pmod{31} \) are 1 and 30.
The solutions to \(x^2 \equiv 2 \pmod{31} \) are 8 and 17.
The solutions to \(x^2 \equiv 8 \pmod{31} \) are 15 and 16.

7. The password \(s \) in the Fiat-Shamir setup is selected in the range 1 to \(n-1 \). Recall that
\(n = p \cdot q \), where \(p \) and \(q \) are both large prime numbers. Note that \(n \) is published and \(v \) is
sent during login – so both are easily obtainable. If the password \(s \) is not relatively prime
to \(n \), then the greatest common divisor (gcd) of \(v \) and \(n \) is \(p \) or \(q \) (one of the primes!).
Once \(p \) and \(q \) have been found, it is easy to find \(s \) and the system breaks down.
K1. In the Fiat-Shamir method, it is important to chose a modulus \(n = p \cdot q \) which is hard to factor because once the factorization is known, obtaining \(s = \sqrt{v} \pmod{n} \) is easy to calculate. Similarly, using a large prime \(n \) does not work because \(s = \sqrt{v} \pmod{n} \) is easily calculated if \(n \) is prime.

K2. Using modulus \(P = 10111 \) and base \(B = 12 \), find the dlog of:

(a) \(2401 = 7^4 \).
\[
\text{dlog}(7) = 3640 \implies 12^{3640} \equiv 7 \pmod{10111}.
\]
\[
\therefore 2401 = 7^4 \equiv (12^{3640})^4 = 12^{14560}.
\] Using Fermat’s Little Theorem, we can reduce the exponent \(14560 \pmod{10110} = 4450 \).
\[
\therefore \text{dlog}(7^4) = 4450.
\]

(b) \(1001 = 7 \cdot 11 \cdot 13 \).
\[
\text{dlog}(1001) = \text{dlog}(7 \cdot 11 \cdot 13) = \text{dlog}(7) + \text{dlog}(11) + \text{dlog}(13)
\]
\[
= 3640 + 250 + 4478 = 8368.
\]
\[
\therefore \text{dlog}(1001) = 8368.
\]

(c) \(10100 \).
\[
10100 \equiv -11 \pmod{10111}.
\]
\[
\text{dlog}(-11) = \text{dlog}(11) + \text{dlog}(-1). \text{ We are given } \text{dlog}(11), \text{ so all we have to do now is calculate } x = \text{dlog}(-1).
\]
\[
\text{Using the definition of dlogs, } 12^x \equiv -1 \pmod{10111} \implies 12^{2x} \equiv 1 \pmod{10111}. \text{ Since } 10111 \text{ is prime, using Fermat’s Little Theorem we know } 12^{10111-1} = 12^{10110} \equiv 1 \pmod{10111}.
\]
\[
\text{Thus, letting } 2x = 10110, \text{ we get } x = 5055.
\]
Thus, \(\text{dlog}(-1) = 5055 \implies \text{dlog}(10110) = \text{dlog}(-1) = \text{dlog}(11) + \text{dlog}(-1)
\]
\[
= 250 + 5055 = 5305.
\]
(d) 9889.

\[9889 \equiv 9889 + 10111 \pmod{10111} = 20000 \pmod{10111}. \]
\[20000 = 2^5 \cdot 5^4. \]
\[\therefore \; \text{dlog}(20000) = \text{dlog}(2^5) + \text{dlog}(5^4). \]

\[\text{dlog}(2^5) \equiv 5 \cdot \text{dlog}(2) \pmod{10110} = 5 \cdot 4918 \pmod{10110} \]
\[= 24090 \pmod{10110} \equiv 3870. \]
\[\text{dlog}(5^4) \equiv 4 \cdot \text{dlog}(5) \pmod{10110} = 4 \cdot 9226 \pmod{10110} \]
\[= 36904 \pmod{10110} = 6574. \]
\[\therefore \; \text{dlog}(9889) = \text{dlog}(20000) = \text{dlog}(2^5) + \text{dlog}(5^4) = 3870 + 6574 = 10444. \]
Reducing 10444 \pmod{10110}, we obtain \(\text{dlog}(9889) = 334. \)