Solutions to Assignment 10

Barr 4.1: 16*, 17

16*. A Sophie Germain prime is a prime number p such that 2p + 1 is also prime. So, the first ten Sophie Germain primes are: 2, 3, 5, 11, 23, 29, 41, 53, 83, 89.

17. A Mersenne prime is a prime number of the form $2^n - 1$.

(a) The first four Mersenne primes are:

$$3 = 2^2 - 1,$$
$$7 = 2^3 - 1,$$
$$31 = 2^5 - 1,$$ and
$$127 = 2^7 - 1.$$

(b) and (c) If $n = r \cdot s$, where r and s are greater than 1, then

$$2^n - 1 = 2^{rs} - 1 = (2^r)^s - 1 = (2^r - 1) \cdot ((2^r)^{s-1} + (2^r)^{s-2} + \ldots + 1),$$

which is a factorization of $2^n - 1$ into nontrivial factors.

Verify that $(2^r)^{s} - 1 = (2^r - 1) \cdot ((2^r)^{s-1} + (2^r)^{s-2} + \ldots + 1)$ by multiplying out the terms.

Thus $2^n - 1$ cannot be prime whenever n is even/composite.

So, if a prime number is a Mersenne prime, it is of the form $2^p - 1$, where p is also a prime number.
1. Use the repeated squaring method to calculate each of the following.

(d) $4^{22} \mod 11$.

$4^2 = 16 \equiv 5 \mod 11$,

$4^4 = (4^2)^2 = (5)^2 = 25 \equiv 3 \mod 11$,

$4^8 = (4^4)^2 = (3)^2 = 9 \equiv 9 \mod 11$,

$4^{16} = (4^8)^2 = (9)^2 = 81 \equiv 4 \mod 11$, and

$4^6 = 4^4 \cdot 4^2 = 3 \cdot 5 = 15 \equiv 4 \mod 11$.

Thus, $4^{22} = 4^{16} \cdot 4^6 = 4 \cdot 4 = 16 \equiv 5 \mod 11$.

(e) $3^{65} \mod 71$

Proceeding analogously as above, we obtain:

$3^2 = 9 \equiv 9 \mod 71$,

$3^4 = (3^2)^2 = (9)^2 = 81 \equiv 10 \mod 71$,

$3^8 = (3^4)^2 = (10)^2 = 100 \equiv 29 \mod 71$,

and we find that $3^{65} \mod 71 \equiv 45 \mod 71$.

Barr 4.3: 1d*, 1e*, 6*.
6.* Using exercise 5, prove the following analog to (4.28):

If \(\gcd(a, n) = 1 \), then \(a^e \equiv a^{e \mod \phi(n)} \) (mod n).

By exercise 5, \(a^{\phi(n)} \equiv 1 \) mod (n). If \(e = q\phi(n) + r \), where \(0 \leq r < \phi(n) \), then

\[
a^e \mod n = a^{q\phi(n)+r} \mod n = (a^q)^{\phi(n)} \cdot a^r \mod n \equiv 1 \cdot a^r \mod n.
\]

Thus \(a^e = a^r \) (mod n).

Note \(e \mod \phi(n) = r \) so, \(a^e \equiv a^r \equiv a^{e \mod \phi(n)} \).

Barr 4.4: 4, 6*, 8

4. Using a three-letter base twenty-six encoding and RSA,

(a) LIE is encoded as 22681,

(b) MAD is encoded as 14248, and

(c) SUN is encoded as 05589.

(see solutions to #6 for procedure)

6.* Encipher the message TAKE A HIKE using \(m = 22987 \) and exponent 7.

First split TAKE A HIKE into TAK EAH IKE.

T is the 20\(^{th}\) letter in the alphabet so its numerical equivalent in base 26 is 19.

A is the 1\(^{st}\) letter in the alphabet so its numerical equivalent in base 26 is 0.

K is the 11\(^{th}\) letter in the alphabet so its numerical equivalent in base 26 is 10.

So, following example 4.4.1 – with 3 letter blocks, we get
\[x = x_2 \cdot 26^2 + x_1 \cdot 26^1 + x_0. \] Enciphering TAK we have \(x_2 = 19, x_1 = 0, x_0 = 10. \)
So, \(x = 19 \cdot 26^2 + 0 \cdot 26^1 + 10 = 12854. \)
\[y \equiv x^7 \mod 22987 = (12854)^7 \mod 22987 \equiv 6712 \mod 22987. \]

Similarly enciphering EAH we have \(x_2 = 4, x_1 = 0, x_0 = 7. \)
So \(x = 4 \cdot 26^2 + 0 \cdot 26^1 + 7 = 2711. \)
\[y \equiv x^7 \mod 22987 = (2711)^7 \mod 22987 \equiv 5879 \mod 22987. \]

Enciphering IKE we get \(x_2 = 8, x_1 = 10, x_0 = 4 \)
So, \(x = 8 \cdot 26^2 + 10 \cdot 26^1 + 4 = 5672 \)
\[y \equiv x^7 \mod 22987 = (5672)^7 \mod 22987 \equiv 2989 \mod 22987 \]

Thus, the enciphered message is 06712 05879 02989.

8. \(m = 11,885,807, s = 6,395,437. \) We follow the procedure described in Example 4.4.3 (Page 290).

Trying to factor \(m, \) we obtain \(m = 1741 \cdot 6827. \)
Thus, \(p = 1741 \) and \(q = 6827. \) Thus, \(n = (p - 1)(q - 1) = 11,877,240. \)
We then find the inverse \(d \) of \(s \) modulo 11,877,240. Using the extended Euclidean algorithm, we obtain \(d = 13. \)

Now, the numerical equivalent of the plaintext is \((8648422)^{13} \mod 11,885,907\).

Finally, we find that the plaintext letters have numerical equivalents 2, 11, 4, 0 and 17. Thus, the message is CLEAR.