Industrial Strength Factorization

Lawren Smithline
Cornell University
lawren@math.cornell.edu
http://www.math.cornell.edu/~lawren
Industrial Strength Factorization

Given an integer N,

determine the prime divisors of N.

Definition. An integer p is prime means:

$1/p$ is not an integer, and

for integers a, b,

if $p \mid ab$, then $p \mid a$ or $p \mid b$.
Industrial Strength Factorization

Application:
break certain public key cryptography.

Metaproblem I: How much does it cost to factor a d digit number N?

Metaproblem II: Given d, design a strategy for picking N which maximizes the cost to factor.

Metaproblem III: Given a determined adversary who has solved Metaproblem II and who picks N, how much does it cost to factor N?
Fast and Slow

Definition (for today) A fast algorithm is one which runs in polynomial time in the length of its input.

Example. Multiplication of two numbers N_1 and N_2 each with at most d digits.

about $2d^2$ operations, depending how you count.

\[
\begin{array}{c c c}
1 & 3 & 7 \\
\times & 3 & 7 \\
\hline
4 & 9 \\
2 & 1 \\
2 & 1 \\
9 \\
7 \\
\hline
+ & 3 \\
5 & 0 & 6 & 9
\end{array}
\]
Fast and Slow

Fast examples:

Let N be a d digit integer.

Write N on the board: $O(d)$.

For $a < N$, compute Na: $O(d^2)$.

For $a < N$, compute $GCD(N, a)$: $O(d^3)$.
Fast and Slow

What is slow?

Factor an odd integer N by trial division.

Example $N = 209$.

try 3
try 5
try 7
try 9
try 11 !
Fast and Slow

To factor N with d digits by trial division, we may have to go up to \sqrt{N}, which has about $d/2$ digits.

Slow example: $O(\sqrt{N}) = O(\exp(d/2))$.

For $d = 150$, at speed of 10^9 trials / second, trial division potentially takes 10^{66} seconds.

One year is $\pi \cdot 10^7$ seconds.

$\pi = \sqrt{10}$.

$\pi \cdot 10^{58}$ years is a long time.
Trial Division

Trial division is great for finding small factors.

The adversary picks N with exactly two prime divisors, both large.

What if we magically knew prime numbers?

We wouldn’t have to try 9 or 77.

Definition. $\pi(x)$ is the number of primes between 1 and x.

Now check only $\pi(\sqrt{N})$ things.
Trial Division

Definition. $\pi(x)$ is the number of primes between 1 and x.

Chebyshev’s Theorem $\pi(x) > x/2 \log x$.

Prime Number Theorem (1896) $\pi(x) \sim x/\log x$.

conjectured by Gauss, proved by Hadamard and de la Vallée-Poussin.

Conclusion. $O(\pi(\sqrt{N}))$ is still slow.

Fun fact:

$$\prod_{s<p \leq s+100}^p \text{ prime} \approx e^{100}.$$
Summary of Fast and Slow

Definition. $L_N[v, \lambda]$ is

$$O\left(\exp(\lambda(\log N)^v(\log \log N)^{1-v})\right).$$

$L_N[v]$ includes $L_N[v, \lambda]$ for every λ.

$L_N[1]$ is slow. e.g. trial division.

$L_N[0]$ is fast, e.g. $GCD(N, a)$.

Avoid embarrassment!
Check whether N is composite.

Answering “Is N composite?” is $L[0]$.
New result in ’02. Previous best was

$$O\left(\left(\log N\right)^{c\log \log \log N}\right).$$
Analytical Estimate

Let $\Psi(x,y)$ be number of integers between 1 and x with all prime divisors less than y.

Theorem For u sufficiently large and $x > 1$,

$$\Psi(x, x^{1/u}) > x/u^{u(1+o(1))}.$$

Lemma (Canfield-Erdős-Pomerance)

There is a constant c such that for $u > c$ and all $x > 1$, if $u > (\log x)^{3/8}$, then

$$\Psi(x, x^{1/u}) > x/u^{3u}.$$
Analytical Estimate

Lemma (Canfield-Erdős-Pomerance)
There is a constant c such that for $u > c$ and all $x > 1$, if $u > (\log x)^{3/8}$, then
\[
\Psi(x, x^{1/u}) > x/u^{3u}.
\]

Proof. If $x < u^{3u}$, trivial.

Suppose $x \geq u^{3u} \geq c^{3c} \geq c^3$.

By Chebyshev, $\pi(x^{1/u}) > ux^{1/u}/2 \log x$.

Let $m = \lfloor u \rfloor$; $u = m + \theta$.

Let $\pi'(y) = \max(1, \pi(y))$.
Analytical Estimate

Lemma (Canfield-Erdös-Pomerance)
There is a constant c such that for $u > c$ and all $x > 1$, if $u > (\log x)^{3/8}$, then
\[
\Psi(x, x^{1/u}) > x/u^{3u}.
\]

Proof (continued).

Claim. $(2 \log x)^{m+1} < u^{3u}$:
\[
(2 \log x)^{m+1} < (2 \log x)^{u+1}.
\]

For $u > 3$ and $u \geq \log^{3/8} x$,
\[
(2 \log x)^{u+1} \leq (u^3)^u.
\]
Analytical Estimate

Lemma (Canfield-Erdős-Pomerance)

There is a constant \(c \) such that for \(u > c \) and all \(x > 1 \), if \(u > (\log x)^{3/8} \), then

\[
\Psi(x, x^{1/u}) > \frac{x}{u^{3u}}.
\]

Proof (concluded).

\[
\psi(x, x^{1/u}) > \pi(x^{1/u}) m \pi'(x^{\theta/u}) / (m + 1)!
\]

\[
> \frac{(ux^{1/u})^m x^{\theta/u}}{2um \log^{m+1} x}
\]

\[
= \frac{x}{(2 \log x)^{m+1}}
\]

\[
> \frac{x}{u^{3u}}.
\]

Exeunt Canfield, Erdős, and Pomerance. Enter Fermat.
Fermat’s Method

Quick... factor 3599.

3599 = 60^2 - 1^2.

If \(x^2 \equiv y^2 \pmod{N} \), compute \(\text{GCD}(x - y, N) \).

50% chance to get a factor of \(N \), because

\[(x - y)(x + y) \equiv 0 \pmod{N}.

3599 = 59 \cdot 61.
Fermat’s Method

Fermat's method: for each $x = 1, 2, ..., \text{check whether } N + x^2 \text{ is a square.}$

The adversary chooses $N = pq$ with prime factors far away from \sqrt{N}.

$p \approx N^{1/e}$ will do.

Now, Fermat’s method is $O(\sqrt{N})$, which is slow.

Let’s use another idea of Fermat.
Fermat’s Method

(This isn’t the other useful Fermat idea.)

Factor 64027.

Yes, \(x^3 + y^3 = (x + y)(x^2 - xy + y^2) \).

But cubes are rarer than squares.
Pollard’s $p – 1$ Method

Fermat’s Little Theorem
If p is prime and $a \in \mathbb{Z}$, and $\gcd(a, p) = 1$, then

$$a^{p-1} \equiv 1 \ (p).$$

Given N, if a kind oracle would tell us $p – 1$ for p dividing N, then

$$a^{p-1} – 1 \equiv 0 \ (p).$$

Therefore, $\gcd(a^{p-1} – 1, N)$ is p or N.

Pollard’s method finds m such that $(p – 1) | m$.

Thus, $\gcd(a^m – 1, N)$ is p or N.
Pollard’s $p - 1$ Method

Let $m_j = LCM(1, 2, \ldots, j)$.

Given $N = pq$, for large enough j, $p - 1$ divides m_j.

So: $a^{m_j} \equiv 1 \pmod{p}$. Maybe $a^{m_j} \not\equiv 1 \pmod{q}$.

Then $GCD(a^{m_j} - 1, N) = p$.

Here’s an example for $N = 20701$.
Pollard’s $p − 1$ Method for $N = 20701$

Pick $a = 2$.
(If $GCD(a, N)$, that’s an instant win.)

Let $m_j = LCM(1, 2, \ldots, j)$.

Let $X_j = 2^{m_j}$ reduced modulo N.

Let $F_j = GCD(X_j − 1, N)$.

<table>
<thead>
<tr>
<th>j</th>
<th>m_j</th>
<th>X_j</th>
<th>F_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>64</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>4096</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>60</td>
<td>6493</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>6493</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>420</td>
<td>17273</td>
<td>127</td>
</tr>
<tr>
<td>8</td>
<td>840</td>
<td>13717</td>
<td>127</td>
</tr>
<tr>
<td>9</td>
<td>2520</td>
<td>6986</td>
<td>127</td>
</tr>
</tbody>
</table>

So $N = 127 \cdot 163$.

Next: another example.
Pollard’s $p - 1$ Method for $N = 5029$

<table>
<thead>
<tr>
<th>j</th>
<th>m_j</th>
<th>X_j</th>
<th>F_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>64</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>4096</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>60</td>
<td>1156</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>6493</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>420</td>
<td>4153</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>840</td>
<td>2968</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>2520</td>
<td>625</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>4920</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>4327</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>4991</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>850</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>2077</td>
<td>1</td>
</tr>
</tbody>
</table>

Better luck with the next method!
Pollard’s $p - 1$ Method Performance

Pollard’s method finds factors p such that prime power factors of $p - 1$ are all small.

Typical size of largest prime power factor of $p - 1$ is

$$p^{1 - 1/e} \approx N^{1/e - 1/e^2}.$$

So: Pollard’s method is slow against a smart adversary.
Pollard’s $p−1$ Method Performance

The adversary already chooses:

$N = pq$, the product of exactly two primes,

p, q are not small.

p, q are not too close to \sqrt{N}

$(p \approx N^{1/e})$

Now add: $p−1, q−1$ each have at least some large prime power factor.
Rational Sieve Method

Given N, let’s solve $x^2 \equiv y^2 \ (N)$.

Method:

Find lots of integers a such that a and $N + a$ have only small prime factors.

Pick a subset of the $a’s$ such that

$$\prod_{i} a_i/(N + a_i) = s^2/t^2.$$

Conclude: For $x = s$, $y = t$,

$$x^2 \equiv y^2 \ (N).$$

$GCD(x - y, N)$ has even odds to be a prime divisor of N.
Rational Sieve Vocabulary

Given N, we pick B, the *smoothness bound*.

We treat a prime p less than B as small.

An integer a is B-smooth means every prime p dividing a is less than B.

The set \mathcal{B} of small primes is the *factor base*.

A pair $(a, N + a)$ of smooth numbers is a *relation or smooth relation*.

Here is an example with $N = 5029$, $B = 20$.
Rational Sieve for $N = 5029$

Factor $N = 5029$.

Factor base $B = \{2, 3, 5, 7, 11, 13, 17, 19\}$.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>$a + N$</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>11</th>
<th>13</th>
<th>17</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>11</td>
<td>5040</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>20</td>
<td>5049</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>25</td>
<td>5054</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>91</td>
<td>5120</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>119</td>
<td>5148</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>171</td>
<td>5200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>196</td>
<td>5225</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>H</td>
<td>221</td>
<td>5250</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>275</td>
<td>5304</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Eliminate 19 with $F + G$ replacing F, G.

Eliminate 2 and 3 with $B + C + H$ and $H + I$ replacing B, C, H, I.
Eliminate 19 with $F + G$.
Eliminate 2 and 3 with $B + C + H$ and $H + I$.

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>7</th>
<th>11</th>
<th>13</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$F + G$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$B + C + H$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$H + I$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Only row E has 17, so strike it.

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>7</th>
<th>11</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H + I$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$F + G$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$B + C + H$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Relations:

$A + H + I$
$A + D + F + G$
$B + C + F + G + H$
Rational Sieve for $N = 5029$

Assembling relations:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>$a + N$</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>11</th>
<th>13</th>
<th>17</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>11</td>
<td>5040</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>221</td>
<td>5250</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>275</td>
<td>5304</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Now compute over \mathbb{Z}, not mod 2:

<table>
<thead>
<tr>
<th>$a/(a + N)$</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>11</th>
<th>13</th>
<th>17</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>11/5040</td>
<td>−4</td>
<td>−2</td>
<td>−1</td>
<td>−1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>221/5250</td>
<td>−1</td>
<td>−1</td>
<td>−3</td>
<td>−1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td>275/5304</td>
<td>−3</td>
<td>−1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>−1</td>
<td>−1</td>
</tr>
</tbody>
</table>

| $A + H + I$ | −8 | −4 | −2 | −2 | 2 | 0 | 0 | 0 | 0 |

$11^2 \equiv (2^4 \cdot 3^2 \cdot 5 \cdot 7)^2$

For $x = 11, y = 5040$, \(x^2 \equiv y^2 \mod{N} \).

Alas, $N = y - x$.
Rational Sieve for $N = 5029$

Assembling relations:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>$a + N$</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>11</th>
<th>13</th>
<th>17</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>11</td>
<td>5040</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>91</td>
<td>5120</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>171</td>
<td>5200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>196</td>
<td>5225</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Now compute over \mathbb{Z}, not mod 2:

<table>
<thead>
<tr>
<th>$a/(a + N)$</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>11</th>
<th>13</th>
<th>17</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$11/5040$</td>
<td>-4</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>$91/5120$</td>
<td>-10</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>$171/5200$</td>
<td>-4</td>
<td>2</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>$196/5225$</td>
<td>2</td>
<td>0</td>
<td>-2</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td>-16</td>
<td>0</td>
<td>-6</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

For $x = 7, y = 2^85^3 = 32000, \quad x^2 \equiv y^2 \pmod{N}$.

Hooray! $\text{GCD}(N, 32007) = 47.$
Rational Sieve Performance

How common are smooth numbers?

From a random sample of integers of size $L[v, \lambda]$, the fraction of $L[w, \mu]$ smooth ones is:

$$\frac{\Psi(L[v, \lambda], L[w, \mu])}{L[v, \lambda]}.$$

The expected sample size to find one $L[w, \mu]$ smooth ones is:

$$L[v, \lambda]/\Psi(L[v, \lambda], L[w, \mu]) = L[v - w, (v - w)\lambda/\mu].$$

The expected sample size to find $L[w, \mu]$ smooth ones is:

$$L[w, \mu]L[v - w, (v - w)\lambda/\mu].$$
Rational Sieve Performance

We choose a small prime bound B of size $L[w, \mu]$.

Factor base \mathcal{B} has size $L[w, \mu]$.

Search for smooth pairs $a, N + a$; a is B-smooth. $N + a$ has size $L[1, 1]$.

Search region size:

$$L[1 - w, (1 - w)/\mu] L[w, \mu].$$

Linear algebra problem:

$$L[w, \mu]^2 = L[w, 2\mu].$$
Rational Sieve Performance

Search region size:

\[L[1 - w, (1 - w)/\mu]L[w, \mu]. \]

Minimize max\((w, 1 - w)\): \(w = 1/2\).

Search region size is:

\[L[1/2, \mu + 1/2\mu]. \]

Minimum at \(\mu = \sqrt{2}/2\).

Search region size is:

\[L[1/2, \sqrt{2}]. \]

Linear algebra is also

\[L[1/2, \sqrt{2}]. \]