1 Preliminaries

Throughout this section we assume that $B_t, B^1_t, B^2_t, \ldots$ are independent Brownian motions with respect to the same filtration \mathcal{F}_t. If H_t is another process we say that H_t is:

- **bounded** if there is an $N < \infty$ such that with probability one, $|H_t| \leq N$ for all t;
- **adapted** if each H_t is \mathcal{F}_t-measurable;
- **continuous** if with probability one, the function $t \mapsto H_t$ is continuous;
- a **martingale** (with respect to \mathcal{F}_t) if for each t $\mathbb{E}[|H_t|] < \infty$ and $\mathbb{E}[H_t | \mathcal{F}_s] = H_s$ for all $s \leq t$;
- a **square integrable martingale** if H_t is a martingale with $\mathbb{E}[H^2_t] < \infty$ for each t;
- a **local martingale** if there exists a sequence of stopping times $\tau_1 < \tau_2 < \cdots$ with respect to \mathcal{F}_t such that $\tau_j \to \infty$ and such that for each j, $H_{t \wedge \tau_j}$ is a martingale.

Let \mathcal{I} denote the set of adapted, continuous processes. Let $\mathcal{M}, \mathcal{M}^2, \mathcal{LM}$ denote the collection of continuous martingales, square integrable martingales, and local martingales, respectively.

We write $b\mathcal{I}, b\mathcal{M}$ for the collection of bounded processes in \mathcal{I}, \mathcal{M}, respectively.

Throughout this section, we will use partitions of intervals $[0, t]$. If t is fixed, we will use Π_n to denote a sequence of partitions, i.e., times

$$0 = t_0^n < t_1^n < t_2^n < \cdots < t_k^n \leq t.$$

In order to simplify the notation, we will write just t_j for t^n_j. We write $||\Pi_n||$ for the mesh of the partition, i.e., the maximal value of $t_j - t_{j-1}$. We write $\overline{\Pi_n}$ for the sequence of dyadic partitions, $t_j = j2^{-n}$ with an appropriate correction for t_k^n if t is not a dyadic rational. Note that $||\overline{\Pi_n}|| = 2^{-n}$.

2 Integration with respect to Brownian motion

We call H a **simple process** if it is of the form

$$H_s = \sum_{j=1}^n C_j 1_{[t_{j-1}, t_j)}(s),$$

where $t_0 < t_1 < \cdots < t_n$ and C_j is a bounded $\mathcal{F}_{t_{j-1}}$-measurable random variable. If $n = 1$, we define

$$Z_s = \int_0^t H_s \, dB_s = \begin{cases}
 0, & t \leq t_0 \\
 C_1 [B_t - B_{t_0}], & t_0 \leq t \leq t_1 \\
 C_1 [B_{t_1} - B_{t_0}], & t \geq t_1.
\end{cases}$$
For $n > 1$, we define

$$Z_t = \int_t^1 H_s \, dB_s$$

by linearity. It is easy to check that this definition does not depend on how a simple process is written. Let \mathcal{I}_s denote the collection of simple processes.

Proposition 1.

- If $H, K \in \mathcal{I}_s$ and $a, b \in \mathbb{R}$, then $aH + bK$ is in \mathcal{I}_s and

$$\int_0^t (aH_s + bK_s) \, dB_s = a \int_0^t H_s \, dB_s + b \int_0^t K_s \, dB_s.$$

- If $H_s \in \mathcal{I}_s$, then

$$Z_t = \int_0^t H_s \, dB_s$$

then $Z_t \in \mathcal{M}^2$. If we define the quadratic variation $\langle Z \rangle_t$ by

$$\langle Z \rangle_t = \int_0^t H_s^2 \, ds,$$

then $Z_t^2 - \langle Z \rangle_t \in \mathcal{M}$. In particular,

$$E[Z_t^2] = E[\langle Z \rangle_t] = \int_0^t E[H_s^2] \, ds. \quad (1)$$

Proof. This can be proved directly from the definition and is left to the reader.

The next proposition shows that “quadratic variation” is a good term for $\langle Z \rangle_t$.

Proposition 2. If $H \in \mathcal{I}$ and $Z_t = \int_0^t H_s \, dB_s$, and Π_n is a sequence of partitions with $\|\Pi_n\| \to 0$, then

$$\lim_{n \to \infty} \sum_{j=1}^{k_n} (Z_{t_j} - Z_{t_{j-1}})^2 = \langle Z \rangle_t$$

in L^2 (and hence in probability). If $\Pi_n = \overline{\Pi}_n$ is the sequence of dyadic partitions or any other sequence such that $\sum \|\Pi_n\| < \infty$, then the limit can be taken almost surely.
Proof. Let

$$Q_n = \left[\sum_{j=1}^{k_n} (B_{t_j} - B_{t_{j-1}})^2 \right] - t = \sum_{j=1}^{k_n} \Delta(j, n)$$

where $\Delta(j, n) = (B_{t_j} - B_{t_{j-1}})^2 - (t_j - t_{j-1})$. The random variables $\Delta(1, n), \ldots, \Delta(k_n, n)$ are independent and $\Delta(j, n)$ has the distribution of $(t_j - t_{j-1})(N^2 - 1)$ where N is a standard normal. Therefore,

$$\mathbb{E}[Q_n^2] = \text{Var}[Q_n] = \sum_{j=1}^{k_n} (t_j - t_{j-1})^2 \mathbb{E}[(N^2 - 1)^2] \leq \|\Pi_n\| \cdot t \mathbb{E}[(N^2 - 1)^2],$$

and hence $Q_n \to 0$ in L^2. Also, Chebyshev’s inequality gives

$$P\{Q_n \geq \epsilon\} \leq \epsilon^{-2} \mathbb{E}[Q_n^2] \leq \epsilon^{-2} \|\Pi_n\| \cdot t \mathbb{E}[(N^2 - 1)^2].$$

If $\|\Pi_n\| < \infty$, the Borel-Cantelli lemma implies that with probability one, for all large n, $Q_n \leq \epsilon$. Hence $Q_n \to t$ a.s., for all rational t and hence for all t. The gives the result for $H = 1_{[0, t]}$, and the result for other $H \in \mathcal{I}$ follows easily from the definition of the integral.

We will define $\int_0^t H_s \, dB_s$ for $H \in \mathcal{I}$. It will turn out that for fixed t,

$$Z_t := \int_0^t H_s \, dB_s = \lim_{n \to \infty} \sum_{j=1}^{k_n} H_{t_{j-1}} [B_{t_j} - B_{t_{j-1}}], \quad (2)$$

where the limit is in probability. This only defines the process up to an event of measure zero. However, we will show that if we restrict to t that are dyadic rationals, Z_t is uniformly continuous on compact intervals with probability one. Hence we can define Z_t for other t by continuity and (2) will still hold.

We first will consider $H \in b\mathcal{I}$. Fix t, let $\|H\|_\infty = \sup_{0 \leq s \leq t} \|H_s\|_\infty$, and

$$\text{osc}(H, t, \delta) = \sup \{|H_s - H_r| : 0 \leq r, s \leq t, |r - s| \leq \delta\}.$$

Fix t. If $H \in b\mathcal{I}$ and Π_n is a sequence of partitions with $\|\Pi_n\| \to 0$, let $H_s^{(n)} \in \mathcal{I}$ be defined by $H_s^{(n)} = H_{t_{j-1}}$, $t_{j-1} \leq s < t_j$, and $H_s^{(n)} = 0$ for $s \geq t$. Note that

$$|H_s - H_s^{(n)}| \leq \text{osc}(H, t, \|\Pi_n\|), \quad 0 \leq s < t.$$

Let $O_n = \text{osc}(H, t, \|\Pi_n\|)$. Since the H_s are continuous, $O_n \to 0$ with probability one. Since $O_n \leq 2 \|H\|_\infty$, we also know that $\mathbb{E}[O_n^2] \to 0$. Let

$$Z_t^{(n)} = \int_0^t H_s^{(n)} \, dB_s.$$
Then by (1),
\[\mathbb{E}[(Z_t^{(n)} - Z_t^{(m)})^2] \leq t \ (O_n + O_m)^2. \]
In particular, \(\{ Z_t^{(n)} \}, n = 1, 2, \ldots, \) is a Cauchy sequence in \(L^2(\Omega, \mathcal{F}_t, \mathbb{P}) \) and we can define
\[Z_t = \int_0^t H_s \, dB_s = \lim_{n \to \infty} Z_t^{(n)}, \]
where the limit is taken in the \(L^2 \) sense, and hence is only defined up to event of probability zero. In particular (2) holds where the limit can be taken in \(L^2 \) or in probability. Note that
\[\mathbb{E}[Z_t^2] = \lim_{n \to \infty} \mathbb{E}[(Z_t^{(n)})^2] = \int_0^t \mathbb{E}[H_s^2] \, ds. \]
As before, we define the quadratic variation
\[\langle Z \rangle_t = \int_0^t H_s^2 \, ds. \]
Note that
\[Z_t^2 - \langle Z \rangle_t = \lim_{n \to \infty} (Z_t^{(n)})^2 - \langle Z^{(n)} \rangle_t, \]
where the convergence is in \(L^1 \) \(((Z_t^{(n)})^2 \to Z_t^2 \) in \(L^1 \) and \(\langle Z^{(n)} \rangle_t \) is uniformly bounded and converges almost surely to \(\langle Z \rangle_t \). In particular, if \(s < t \),
\[\mathbb{E}[Z_t \mid \mathcal{F}_s] = Z_s, \quad \mathbb{E}[Z_t^2 - \langle Z \rangle_t \mid \mathcal{F}_s] = Z_s^2 - \langle Z \rangle_s. \]
Now, for the moment, restrict our consideration to \(t \) in the dyadic rationals \(D \). Using a diagonalization argument, we can find a subsequence \(\Pi_n \), that we will denote as just \(\Pi_n \), such that with probability one for all \(t \in D \),
\[Z_t = \int_0^t H_s \, dB_s = \lim_{n \to \infty} \sum_{j=1}^{k_n} H_{t_j-1} \, [B_{t_j} - B_{t_{j-1}}]. \]

Lemma 3. Suppose \(H \in \mathcal{I} \) and \(Z_t \) is defined as above. Then with probability one, for each \(t \in D \), \(s \mapsto Z_s \) is a uniformly continuous function on \(D \cap [0, t] \).

Proof. If \(M_s, s \in D \) is any square integrable martingale, then the \(L^2 \) maximal lemma gives
\[\mathbb{P}\{ \sup: [M_s - M_0]: 0 \leq s \leq t, s \in D \} \geq \epsilon \leq \epsilon^{-2} \mathbb{E}[M_t^2]. \]
Applying this to \(Z_s - Z_s^{(n)} \), we get that
\[
P\left\{ \sup: |Z_s - Z_s^{(n)}| : 0 \leq s \leq t, s \in D \right\} \geq \epsilon \leq e^{-2 \mathbb{E}[(Z_t - Z_t^{(n)})^2]} \to 0.
\]

By taking a subsequence if necessary, we can assume that \(\sum \mathbb{E}[(Z_t - Z_t^{(n)})^2] < \infty \) and hence, using Borel-Cantelli, that with probability one \(Z_s, 0 \leq s \leq t \), is a uniform limit of \(Z_s^{(n)}, 0 \leq s \leq t \). Since the uniform limit of continuous functions is continuous, the result is proved.

We now define \(Z_t \) for all \(t \) by continuity. It is an easy exercise to verify that this is the same as (2) (up to an event of probability zero). Moreover, if \(\Pi_n \) is any sequence of partitions, then there is a subsequence (which can depend on \(H \) but does not depend on \(\omega \)) such that with probability one, for all \(s \leq t \),
\[
\int_0^s H_r \, dB_r = \lim_{n \to \infty} \sum_{t_j \leq s} H_{t_j - 1} \, [B_{t_j} - B_{t_{j-1}}].
\]

Proposition 4. If \(H \in \mathcal{B}, \ Z_t = \int_0^t H_s \, dB_s \), and \(\Pi_n \) is a sequence of partitions as above, then
\[
\lim_{n \to \infty} \sum_{j=1}^{k_n} [Z_{t_j} - Z_{t_{j-1}}]^2 = \langle Z \rangle_t = \int_0^t H_s^2 \, ds
\]
in probability.

Proof. Consider a different sequence of partitions \(\Pi^*_n \), which we write \(0 = s_0 < s_1 < \ldots < s_l = t \). Let \(Z_s^{(l)} \) be the approximation of \(Z_s \) by simple processes using this sequence. For a fixed \(l \),
\[
\lim_{n \to \infty} \sum_{j=1}^{k_n} [Z_{t_j}^{(l)} - Z_{t_{j-1}}^{(l)}]^2 = \langle Z^{(l)} \rangle_t = \int_0^t (H_s^{(l)})^2 \, ds.
\]

But
\[
\| \sum_{j=1}^{k_n} (Z_{t_j} - Z_{t_{j-1}})^2 - [Z_{t_j}^{(l)} - Z_{t_{j-1}}^{(l)}]^2 \|_2 \leq c_l,
\]
for some \(c_l \to 0 \). We note that by taking a subsequence we can make it an almost sure limit for all \(t \in D \), and hence (by monotonicity) for all \(t \).
Let
\[
\phi_N(x) = \begin{cases}
-N, & x \leq -N \\
0, & -N \leq x \leq N \\
N, & x \geq N.
\end{cases}
\]

Suppose $H \in \mathcal{I}$. Let
\[
Z_{t,N} = \int_0^t \phi_N(H_s) \, dB_s.
\]

We then define the stochastic integral Z_t by
\[
Z_t = \lim_{N \to \infty} Z_{t,N}.
\]

This limit exists trivially (at least on the event where H is continuous). Also, if Π_n is any sequence of partitions,
\[
Z_t = \lim_{n \to \infty} \sum_{j=1}^{k_n} H_{t_{j-1}} \left[B_{t_j} - B_{t_{j-1}} \right],
\]

where the limit is taken in probability. Moreover, we can find a subsquence (depending on H) such that the limit is an almost sure limit. As before, let
\[
\langle Z \rangle_t = \int_0^t H_s^2 \, ds.
\]

Then,
\[
\lim_{n \to \infty} \sum_{j=1}^{k_n} [Z_{t_j} - Z_{t_{j-1}}]^2 = \langle Z \rangle_t
\]

in probability. By taking a subsequence, the limit can be made almost sure for every t. For later reference, we note that it also follows that if G_s is any continuous process (not necessary adapted), and $s_j \in [t_{j-1}, t_j]$, then
\[
\lim_{n \to \infty} \sum_{j=1}^{k_n} G_{s_j} [Z_{t_j} - Z_{t_{j-1}}]^2 = \int_0^t G_s \, d\langle Z \rangle_s = \int_0^t G_s \, H_s^2 \, ds,
\]

where the limit is in probability (or almost sure along a subsequence).
Proposition 5. If \(H \in \mathcal{I} \), then \(Z_t \) and \(Z_t^2 - \langle Z \rangle_t \) are local martingales. If

\[
E[\langle Z \rangle_t] = \int_0^t E[H_s^2] \, ds < \infty,
\]

then \(Z_t \in \mathcal{M}^2 \), \(Z_t - \langle Z \rangle_t \in \mathcal{M} \).

Proof. If

\[
\tau_N = \inf\{ s : |H_s| \geq N \},
\]

then \(Z_{t\wedge \tau_N} = Z_{t\wedge \tau_N,N} \). Also \(\tau_1 < \tau_2 < \cdots \) and \(\tau_N \to \infty \).

Proposition 6. If \(H, K \in \mathcal{I} \), and \(a, b \in \mathbb{R} \), then

\[
\int_0^t (aH_s + bK_s) \, dB_s = a \int_0^t H_s \, dB_s + b \int_0^t K_s \, dB_s.
\]

Proof. Immediate from the definition.

Proposition 7. If \(H \in \mathcal{I} \), \(Z_t = \int_0^t H_s \, dB_s \), then

\[
Z_t^2 = 2 \int_0^t Z_s \, dB_s + \langle Z \rangle_t.
\]

Proof. Let \(\Pi_n \) be a sequence of partitions as above. Then (recalling that \(Z_0 = 0 \),

\[
Z_t^2 = \sum_{j=1}^{k_n} [Z_t^2_{i_j} - Z_t^2_{i_{j-1}}] = 2 \sum_{j=1}^{k_n} Z_{t_{j-1}} [Z_{i_j} - Z_{i_{j-1}}] + \sum_{j=1}^{k_n} [Z_{i_j} - Z_{i_{j-1}}]^2.
\]

As \(n \to \infty \), the right hand side converges in probability to

\[
2 \int_0^t Z_s \, dZ_s + \langle Z \rangle_t.
\]

Suppose \(H_s, K_s \in \mathcal{I} \) and

\[
Z_t = \int_0^t H_s \, dB_s, \quad Y_t = \int_0^t K_s \, dB_s.
\]

Define

\[
\langle Z, Y \rangle_t = \int_0^t H_s K_s \, ds.
\]
Under this definition, $\langle Z \rangle_t = \langle Z, Z \rangle_t$. Note that

$$4\langle Z, Y \rangle_t = \langle Z + Y \rangle_t - \langle Z - Y \rangle_t.$$

This implies that $Z_t Y_t - \langle Z, Y \rangle_t$ is a local martingale and if Π_n is a sequence of partitions as above,

$$\lim_{n \to \infty} \sum_{j=1}^{k_n} (Z_{t_j} - Z_{t_{j-1}}) (Y_{t_j} - Y_{t_{j-1}}) = \langle Z, Y \rangle_t,$$

in probability. In fact,

$$Z_t Y_t - \langle Z, Y \rangle_t = \int_0^t Z_s \, dY_s + \int_0^t Y_s \, dZ_s.$$

3 Itô’s Formula

We say that $h(t, x)$ is an adapted continuous function if:

- With probability one, $h(t, x)$ is a continuous function on $[0, \infty) \times \mathbb{R}$,
- For each rational x, $h(t, x) \in \mathcal{I}$.

The assumption of continuity implies that $h(t, x)$ is determined by the values of $h(t, x)$ for rational x. Let \mathcal{A} be the set of adapted continuous functions, and let $\mathcal{A}_{1,2}$ be the set of adapted continuous functions $h(t, x)$ such that with probability one, \dot{h}, h', h'' exist and are in \mathcal{A} (here we use dots for time derivatives and $', ''$ for x derivatives). A deterministic function that is C^1 in t and C^2 in x is in $\mathcal{A}_{1,2}$.

Proposition 8. Suppose $Z_t = \int_0^t H_s \, dB_s \in \mathcal{M}$ and $h \in \mathcal{A}_{1,2}$. Then,

$$h(t, Z_t) - h(0, Z_0) = \int_0^t h'(s, Z_s) \, H_s \, dB_s + \int_0^t [h(s, Z_s) + \frac{1}{2} h''(s, Z_s) \, H_s^2] \, ds.$$

Proof. We may assume that $h(t, x)$ is zero outside a compact interval in \mathbb{R} (For example, we can let $h_N(t, x) = h(t, x) g_N(x)$ where g is a C^∞ function that is 1 on $[-N, N]$, 0 on $[-N - 1, N + 1]$ and $0 \leq g \leq 1$. If we have the result for each h_N we have the general result..) Fix t, and let Π_n be a sequence of partitions as above. We write the telescoping sum

$$h(t, Z_t) - h(0, Z_0) = \sum_{j=1}^{k_n} [h(t_{j}, Z_{t_j}) - h(t_{j-1}, Z_{t_{j-1}})].$$
By the mean value theorem, we can write
\[
h(t_j, Z_{t_j}) - h(t_{j-1}, Z_{t_{j-1}}) = \\
[h(t_j, Z_{t_j}) - h(t_{j-1}, Z_{t_{j-1}})] + h'(t_{j-1}, Z_{t_{j-1}}) [Z_{t_j} - Z_{t_{j-1}}] + \frac{1}{2} h''(t_{j-1}, Z_{s_j}) [Z_{t_j} - Z_{t_{j-1}}]^2,
\]
for some \(s_j \in [t_{j-1}, t_j] \).

Let
\[
O_n = \sup \{|\hat{h}(s, x) - \hat{h}(r, x)| : x \in \mathbb{R}, 0 \leq r, s \leq t, |s - r| \leq \|\Pi\|_n\},
\]
\[
O_n^1 = \sup \{|Z_s - Z_r| : 0 \leq r, s \leq t, |s - r| \leq \|\Pi\|_n\},
\]
\[
O_n^2 = \sup \{|h''(r, x) - h''(s, y)| : 0 \leq r, s \leq t, |s - r| \leq \|\Pi\|_n, |x - y| \leq O_n^1\}.
\]

Then \(O_n + O_n^1 + O_n^2 \to 0 \) with probability one. Since
\[
h(t, Z_{t_j}) - h(t_{j-1}, Z_{t_j}) = [\hat{h}(t_{j-1}, Z_{t_{j-1}}) + \epsilon_j] (t_j - t_{j-1}),
\]
for some \(|\epsilon_j| \leq O_n \), it follows that with probability one,
\[
\lim_{n \to \infty} \sum_{j=1}^{k_n} [h(t_j, Z_{t_j}) - h(t_{j-1}, Z_{t_{j-1}})] = \int_0^t \hat{h}(s, Z_s) \, ds.
\]

We have already seen that
\[
\lim_{n \to \infty} \sum_{j=1}^{k_n} h'(t_{j-1}, Z_{t_{j-1}}) [Z_{t_j} - Z_{t_{j-1}}] = \int_0^t h'(s, Z_s) \, dZ_s,
\]
in probability. Finally, since \(|h''(t_{j-1}, Z_{s_j}) - h''(t_{j-1}, Z_{t_{j-1}})| \leq O_n^2 \), it follows from (3) that with probability one
\[
\lim_{n \to \infty} \sum_{j=1}^{k_n} h''(t_{j-1}, Z_{s_j}) [Z_{t_j} - Z_{t_{j-1}}]^2 = \int_0^t h''(s, Z_s) \, d(Z)_s = \int_0^t h''(s, Z_s) \, H_s^2 \, ds.
\]
4 Several Brownian motions

Assume that we have a probability space and filtration \mathcal{F}_t on which are defined a d-dimensional Brownian motion $\tilde{B}_t = (B_t^1, \ldots, B_t^d)$. We have already shown how to define the stochastic integral

$$Z_t = \int_0^t H_s \, dB_s^i,$$

where $H_t \in \mathcal{I}$. We have the following covariance rule:

$$\langle \int_0^t H_s \, dB_s^i, \int_0^t K_s \, dB_s^i \rangle_t = \int_0^t H_s \, K_s \, s.$$

Proposition 9. If $H, K \in \mathcal{I}$, $i \neq l$, and $Z_t = \int_0^t H_s \, dB_s^i, Y_t = \int_0^t K_s \, dB_s^l$ then $Z_t Y_t$ is a local martingale. Also, if Π_n is a sequence of partitions,

$$\lim_{n \to \infty} \sum_{j=1}^{k_n} [Z_{t_j} - Z_{t_{j-1}}] [Y_{t_j} - Y_{t_{j-1}}] = 0,$$

in probability.

Proof. Do this first for simple processes, then bounded processes, then general processes. The second result uses the fact that

$$\lim_{n \to \infty} \sum_{j=1}^{k_n} [B_{t_j}^i - B_{t_{j-1}}^i] [B_{t_j}^l - B_{t_{j-1}}^l] = 0,$$

in L^2. This follows easily from

$$\mathbb{E} [[B_{t_j}^i - B_{t_{j-1}}^i] [B_{t_j}^l - B_{t_{j-1}}^l]] = 0,$$

$$\text{var} [[B_{t_j}^i - B_{t_{j-1}}^i] [B_{t_j}^l - B_{t_{j-1}}^l]] = (t_j - t_{j-1})^2.$$

More generally, if

$$Z_t^1 = \sum_{j=1}^d \int_0^t H_s^j \, dB_s^j, \quad Z_t^2 = \sum_{j=1}^d \int_0^t K_s^j \, dB_s^j.$$
are two continuous local martingales, and

\[\langle Z^1, Z^2 \rangle_t = \int_0^t \sum_{j=1}^d H^j_s K^j_s \, ds, \]

then \(Z^1_t Z^2_t - \langle Z^1, Z^2 \rangle_t \) is a local martingale and

\[\lim_{n \to \infty} \sum_{j=1}^k_n |Z^1_{t_j} - Z^1_{t_{j-1}}| |Z^2_{t_j} - Z^2_{t_{j-1}}| = \langle Z^1, Z^2 \rangle_t, \]

in probability.

5 Integration with respect to local semimartingales

Let \(\mathcal{SM} \) denote the set of all processes \(Z_t \) of the form

\[Z_t = \int_0^t R_s \, ds + \sum_{j=1}^d \int_0^t H^j_s \, dB^j_s, \]

where \(R_s, H^j_s \in \mathcal{I} \). These processes are called continuous local *semimartingales*. We write this in shorthand by

\[dZ_t = R_t \, dt + \sum_{j=1}^d H^j_t \, dB^j_t = R_t \, dt + \bar{H}_t \cdot dB_t, \]

where \(\bar{H}_t = (H^1_t, \ldots, H^d_t), \bar{B}_t = (B^1_t, \ldots, B^d_t) \). The quadratic variation of \(Z_t \) is defined to be the quadratic variation of the martingale part,

\[\langle Z \rangle_t = \langle \sum_{j=1}^d \int_0^t H^j_s \, dB^j_s \rangle_t = \int_0^t \langle \sum_{j=1}^d (H^j_s)^2 \rangle \, ds \]

If

\[Y_t = \int_0^t S_s \, ds + \sum_{j=1}^d \int_0^t K^j_s \, dB^j_s, \]

in another local semimartingale in \(\mathcal{SM} \), the covariance process is defined by

\[\langle Z, Y \rangle_t = \langle \sum_{j=1}^d \int_0^t H^j_s \, dB^j_s, \sum_{j=1}^d \int_0^t K^j_s \, dB^j_s \rangle_t = \int_0^t \langle \sum_{j=1}^d H^j_s K^j_s \rangle \, ds. \]
If Π_n is a sequence of partitions as above, then
\[\lim_{n \to \infty} \sum_{j=1}^{k_n} [Z_{t_j} - Z_{t_{j-1}}] [Y_{t_j} - Y_{t_{j-1}}] = \langle Z, Y \rangle_t, \]
in probability. If $J_s \in \mathcal{I}$, we define the integral with respect to Z:
\[\int_0^t J_s \, dZ_s = \int_0^t J_s \, K_s \, ds + \sum_{j=1}^d \int_0^t J_s \, H_s^i \, dB^i_s. \]
Then,
\[\langle \int_0^t J_s \, dZ_s, \int_0^t F_s \, dZ_s \rangle_t = \sum_{j=1}^d \int_0^t J_s \, F_s \, (H_s^i)^2 \, ds. \]
Also,
\[\lim_{n \to \infty} \sum_{j=1}^{k_n} J_{t_j - 1} [Z_{t_j} - Z_{t_{j-1}}] = \int_0^t J_s \, dZ_s, \]
in probability and the following product rule holds,
\[Z_t Y_t = \int_0^t Z_s \, dY_s + \int_0^t Y_s \, dZ_s + \langle Z, Y \rangle_t. \]
This can be written
\[d(Z_t Y_t) = Z_t \, dY_t + Y_t \, dZ_t + d\langle Z, Y \rangle_t. \quad (4) \]

6 Itô’s formula for semimartingales

Let m be a positive integer and suppose that
\[K_s^i, \quad i = 1, \ldots, m; \quad H_s^{i,j}, \quad i = 1, \ldots, m; \quad j = 1, \ldots, d, \]
are in \mathcal{I}. Write $\tilde{H}_s^i = (H_s^{i,1}, \ldots, H_s^{i,d})$. Let Z^1, \ldots, Z^m be semimartingales of the form
\[Z_t^i = Z_t^0 + \int_0^t K_s^i \, ds + \int_0^t \tilde{H}_s^i \cdot dB_s = \int_0^t K_s^i \, ds + \sum_{j=1}^d \int_0^t H_s^{i,j} \, dB^j_s, \]
and let \(\tilde{Z}_t = (Z_1^t, \ldots, Z_m^t) \). Let \(A^m = A \times \cdots \times A \) denote the set of adapted continuous functions \(h(t, x^1, \ldots, x^m) \), and let \(A_{1,2}^m \) denote the set of \(h(t, x^1, \ldots, x^m) \) such that for all \(1 \leq i, l \leq m \) the derivatives

\[
\dot{h}(t, x^1, \ldots, x^m), \quad h_i(t, x^1, \ldots, x^m), \quad h_{il}(t, x^1, \ldots, x^m)
\]

exist and are in \(A^m \). Here we write \(h_i \) for differentiation with respect to \(x^i \) and \(h_{il} \) for the corresponding double partials. We state an extension of Itô’s formula which can be proved in the same way as the previous one.

Proposition 10. Suppose \(Z^1, \ldots, Z^m \) are as above and \(h \in A_{1,2}^m \). Then

\[
h(t, \tilde{Z}_t) - h(0, \tilde{Z}_0) = \int_0^t \dot{h}(s, \tilde{Z}_s) \, ds + \sum_{i=1}^m \int_0^t h_i(s, \tilde{Z}_s) \, dZ^i_s + \frac{1}{2} \sum_{i=1}^m \sum_{l=1}^m \int_0^t h_{il}(z, \tilde{Z}_s) \, d\langle Z^i, Z^l \rangle_s =
\]

\[
\sum_{j=1}^d \int_0^t \left[\sum_{i=1}^m h_i(s, \tilde{Z}_s) H_{ij}^s \right] \, dB^j_s +
\]

\[
\int_0^t \left[\dot{h}(z, \tilde{Z}_s) + \sum_{i=1}^m h_i(s, \tilde{Z}_s) K^i_s + \frac{1}{2} \sum_{i=1}^m \sum_{l=1}^m \sum_{j=1}^d h_{il}(s, \tilde{Z}_s) H_{ij}^s H_{lj}^s \right] \, ds.
\]

One can generalize this proposition. For \(1 \leq b \leq m + 1 \), let \(A_{1,2}^{m,b} \) be the set of adapted continuous functions \(h(t, z^1, \ldots, z^m) \) such that for all \(1 \leq i \leq m \) and \(b \leq i, l \leq m \) the derivatives

\[
\dot{h}(t, x^1, \ldots, x^m), \quad h_i(t, x^1, \ldots, x^m), \quad h_{il}(t, x^1, \ldots, x^m)
\]

exist and are in \(A^m \). Under this definition, \(A_{1,2}^m = A_{1,2}^{m,1} \). Then we get the following.

Proposition 11. Suppose \(Z^1, \ldots, Z^m \) are as above and \(h \in A_{1,2}^{m,b} \). Suppose \(H_i \equiv 0 \) for \(i < b \). Then

\[
h(t, \tilde{Z}_t) - h(0, \tilde{Z}_0) = \int_0^t \dot{h}(s, \tilde{Z}_s) \, ds + \sum_{i=1}^m \int_0^t h_i(s, \tilde{Z}_s) \, dZ^i_s + \frac{1}{2} \sum_{i=1}^m \sum_{l=1}^m \int_0^t h_{il}(z, \tilde{Z}_s) \, d\langle Z^i, Z^l \rangle_s =
\]

13
\[
\sum_{j=1}^{d} \int_{0}^{t} \left[\sum_{i=b}^{m} h_{i}(s, \tilde{Z}_{s}) H^{i,j}_{s} \right] dB^{j}_{s} + \\
\int_{0}^{t} \left[\tilde{h}(z, \tilde{Z}_{s}) + \sum_{i=1}^{m} h_{i}(s, \tilde{Z}_{s}) K^{i}_{s} + \frac{1}{2} \sum_{i=b}^{m} \sum_{l=b}^{m} \sum_{j=1}^{d} h_{i}(s, \tilde{Z}_{s}) H^{i,j}_{s} H^{l,j}_{s} \right] ds.
\]

If the semimartingales are just independent Brownian motions, the form of Itô's formula is easier. If \(h(t, x^{1}, \ldots, x^{d}) \) is a function of on \([0, \infty) \times \mathbb{R}^{d} \), write \(\Delta \) for the Laplacian in the space variables:

\[
\Delta h(t, \tilde{x}) = \sum_{j=1}^{d} h_{j}(t, \tilde{x}).
\]

Proposition 12. Suppose \(\tilde{B}_{t} = (B^{1}_{t}, \ldots, B^{d}_{t}) \) is a standard \(d \)-dimensional Brownian motion and \(h(t, x^{1}, \ldots, x^{d}) \) is a function that is \(C^{1} \) in \(t \) and \(C^{2} \) in \(x^{1}, \ldots, x^{d} \). Then,

\[
h(t, \tilde{B}_{t}) - h(0, \tilde{B}_{0}) = \sum_{j=1}^{d} \int_{0}^{t} h_{j}(s, \tilde{B}_{s})] dB^{j}_{s} + \int_{0}^{t} \left[\tilde{h}(s, \tilde{B}_{s}) + \frac{1}{2} \Delta h(s, \tilde{B}_{s}) \right] ds.
\]

7 Time changes of martingales

Suppose \(H \in \mathcal{I} \) and \(Z_{t} = \sum_{j=1}^{d} \int_{0}^{t} H^{j}_{s} dB_{s} \) is a continuous local martingale. Suppose that with probability one,

\[
\lim_{t \to \infty} \langle Z \rangle_{t} = \int_{0}^{\infty} \sum_{j=1}^{d} (H^{j}_{s})^{2} ds = \infty,
\]

and define stopping times \(\tau_{r} \) by

\[
\tau_{r} = \inf\{t : \langle Z \rangle_{t} = r\}.
\]

Proposition 13. Let \(W_{r} = Z_{\tau_{r}} \). Then \(W_{r} \) is a standard Brownian motion with respect to the filtration \(\mathcal{F}_{\tau_{r}} \).

Proof. Obviously \(W_{0} = 0 \) and \(W_{r} \) has continuous paths almost surely. It suffices, therefore, to show that for every \(r_{0} < r \), that the distribution of \(W_{r} - W_{r_{0}} \) conditioned on \(\mathcal{F}_{r_{0}} \) is normal, mean zero, variance \(r - r_{0} \). From the strong Markov property of Brownian motion, it suffices to prove this when \(r_{0} = 0 \).
If \(y \in \mathbb{R} \), let \(Y_t = \exp \{ iyZ_t - y^2 \langle Z \rangle_t / 2 \} \). Itô’s formula shows that this is a local martingale (here we need to apply Itô’s formula to a complex function, but we just apply it to the real and imaginary parts separately). For \(t \leq \tau \), \(Y_t \) is uniformly bounded. Hence we can use the optional sampling theorem to conclude that \(1 = \mathbb{E}[Y_0] = \mathbb{E}[Y_{\tau}] \). This implies \(\mathbb{E}[e^{iyZ_{\tau}}] = e^{r^2/2} \) for each \(y \in \mathbb{R} \) and hence \(Z_{\tau} \) has a normal distribution with mean zero and variance \(r \).

8 Examples

8.1 Martingales from harmonic functions

Suppose \(f : \mathbb{R}^d \to \mathbb{R} \) is a harmonic function, i.e., \(\Delta f(\bar{x}) = 0 \) for all \(\bar{x} \in \mathbb{R}^d \). Let \(\tilde{B}_t \) be a standard \(d \)-dimensional Brownian motion. Then Itô’s formula shows that

\[
 f(\tilde{B}_t) - f(\tilde{B}_0) = \sum_{j=1}^{d} \int_0^t f_j(\tilde{B}_s) \, dB_s^j.
\]

In particular, \(Y_t = f(\tilde{B}_t) \) is a local martingale. If \(D \) is an open set in \(\mathbb{R} \) and

\[
 \tau = \tau_D = \inf \{ t \geq 0 : \tilde{B}_t \notin D \},
\]

and \(\Delta f(\bar{x}) = 0 \) for \(\bar{x} \in D \), then we can similarly show that \(Y_{t \wedge \tau} \) is a local martingale. If \(D \) is a bounded domain and \(f \) is continuous on \(\overline{D} \) (so that \(f \) is bounded on \(\overline{D} \)), then \(Y_{t \wedge \tau} \) is a bounded martingale.

8.2 Exponential martingale

Suppose that \(Z_t = \sum_{j=1}^{d} \int_0^t H_s \, dB_s \) is a continuous local martingale. Then applying Itô’s formula with \(h(t, x) = e^x \), gives

\[
e^{Z_t} - 1 = \int_0^t e^{Z_s} \, dZ_s + \int_0^t \frac{1}{2} e^{Z_s} \, d\langle Z \rangle_s.
\]

If \(Y_t = Z_t - \langle Z \rangle_t / 2 \), then

\[
e^{Y_t} - 1 = \int_0^t e^{Y_s} \, dZ_s,
\]

i.e., \(M_t = e^{Y_t} = \exp \{ Z_t - \langle Z \rangle_t / 2 \} \) satisfies the exponential differential equation \(dM_t = M_t \, dZ_t \). In particular, \(M_t \) is a local martingale called the exponential martingale derived from \(Z_t \).
8.3 Bessel process

Let \(\tilde{B}_t \) be a standard \(d \)-dimensional Brownian motion \((d > 1)\) with \(B_0 \neq 0 \). Applying Itô's formula to \(f(x^1, \ldots, x^d) \) gives

\[
|B_t| = |B_0| + \sum_{j=1}^{d} \int_0^t \frac{B^j_t}{|B_s|} \, ds + \int_0^t \frac{d - 1}{2} \frac{1}{|B_s|} \, ds.
\]

Since, with probability one, \(B_t \neq 0 \) for all \(t \), there is no problem with the integrals. Note that

\[
\tilde{B}_t := \sum_{j=1}^{d} \int_0^t \frac{B^j_s}{|B_s|} \, ds
\]

is a continuous local martingale with

\[
\langle \tilde{B} \rangle_t = \sum_{j=1}^{d} \int_0^t \left[\frac{B^j_s}{|B_s|} \right]^2 \, ds = t.
\]

Hence by Proposition 13, \(\tilde{B}_t \) is a Brownian motion, and \(Y_t := |B_t| \) satisfies the stochastic differential equation

\[
dY_t = d\tilde{B}_t + \frac{a}{Y_t} \, dt,
\]

where \(a = (d - 1)/2 \). This equation is often called the Bessel equation and the solution \(Y_t \) is called a Bessel process. One can solve this equation for all \(a \), at least up to the first time \(\tau \) with \(Y_\tau = 0 \).

8.4 Holomorphic functions

A function \(f : \mathbb{C} \to \mathbb{C} \) is called holomorphic or analytic at \(z \) if the complex derivative exists. Equivalently a holomorphic function is a function \(f : \mathbb{R}^2 \to \mathbb{R}^2, f(x^1, x^2) = (u(x^1, x^2), v(x^1, x^2)) \) that satisfies the Cauchy-Riemann equations, \(u_1(\bar{x}) = v_2(\bar{x}), u_2(\bar{x}) = -v_2(\bar{x}) \). The Cauchy-Riemann equations imply that \(u, v \) are harmonic functions. If \(\tilde{B}_t \) is a standard two-dimensional Brownian motion, we can consider it as a complex valued Brownian motion \(B_t = B^1_t + iB^2_t \). Let \(Y_t = f(B_t) \). Then Itô's formula and the Cauchy-Riemann equations give

\[
d[u(\tilde{B}_t)] = u_1(\tilde{B}_t) \, dB^1_t + u_2(\tilde{B}_t) \, dB^2_t,
\]

\[
d[v(\tilde{B}_t)] = -u_2(\tilde{B}_t) \, dB^1_t + u_1(\tilde{B}_t) \, dB^2_t.
\]
Then $u(\tilde{B}_t)$ and $v(\tilde{B}_t)$ are local martingales with

$$
\langle u(\tilde{B}) \rangle_t = \langle v(\tilde{B}) \rangle_t = \int_0^t ([u_1(\tilde{B}_s)]^2 + [u_2(\tilde{B}_s)]^2) \, ds = \int_0^t |f'(\tilde{B}_s)|^2 \, ds.
$$

Note also that $\langle u(\tilde{B}), v(\tilde{B}) \rangle_t = 0$. A proof similar to that in Proposition 13 can be used to show that the σ_r is the first time t that $\langle u(\tilde{B}) \rangle_t = \langle v(\tilde{B}) \rangle_t = r$, then Y_{σ_r} is a standard complex Brownian motion.

If $D \subset \mathbb{C}$ is a domain, $f : D \to \mathbb{C}$ is holomorphic and one-to-one in D and

$$
\tau = \tau_D = \inf \{t \geq 0 : \tilde{B}_t \notin D\},
$$

then if $\tilde{B}_0 \in D$, $X_r = Y_{\sigma_r \wedge \tau}$ is a Brownian motion starting at $f(\tilde{B}_0)$, stopped upon first leaving $f(D)$.

9 Girsanov’s transformation

Suppose $K_s \in \mathcal{A}$ and let M_t be the positive martingale

$$
M_t = \exp \left\{ \int_0^t K_s \, dB_s - \frac{1}{2} \int_0^t K_s^2 \, ds \right\}.
$$

Itô’s formula shows that M_t satisfies the equation $dM_t = M_t \, K_t \, dB_t$. Let Q denote the measure on (Ω, \mathcal{F}) whose Radon-Nikodym derivative with respect to P is M_t. If we let E_Q denote expectations with respect to Q, then for every \mathcal{F}_t measurable Y, $E_Q[Y] = E[Y \, M_t]$. Note that if $s < t$ and Y is \mathcal{F}_s-measurable, then

$$
E[Y \, M_t] = E[E[Y \, M_t \mid \mathcal{F}_s]] = E[Y \, E[M_t \mid \mathcal{F}_s]] = E[Y \, M_s],
$$

so the definition is consistent.

Proposition 14. If

$$
X_t = B_t - \int_0^t K_r \, dr,
$$

then X_t is a Q-martingale with respect to \mathcal{F}_t, i.e., if $s < t$, then $E_Q[X_t \mid \mathcal{F}_s] = X_s$.

Proof. We first recall that the conditional expectation $E_Q[X_t \mid \mathcal{F}_s]$ is the unique \mathcal{F}_s-measurable random variable Y such that for all $A \in \mathcal{F}_s$, $E_Q[Y \, 1_A] = E_Q[X_t \, 1_A]$. In other words,

$$
E[Y \, 1_A \, M_s] = E[X_t \, 1_A \, M_t].
$$

17
Hence to prove the result, it suffices to show that $X_t M_t$ is a \mathbf{P}-martingale. The product formula gives

$$d(X_t M_t) = X_t \, dM_t + M_t \, dX_t + d\langle X, M \rangle_t.$$

The “dt” terms cancel which establishes the proposition.

More generally, let

$$Z_t = \sum_{j=1}^{d} \int_{0}^{t} H_{s}^{j} \, dB_{s}^{j},$$

and let $M_t = \exp \{Z_t - \langle Z \rangle_t / 2\}$ be the corresponding exponential martingale satisfying $dM_t = M_t \, dZ_t$. Assume sufficient boundedness so that M_t is a martingale (not just a local martingale).

Proposition 15. If

$$X_t = Z_t - \int_{0}^{t} M_{r}^{-1} \, d\langle Z \rangle_r,$$

then X_t is a \mathbf{Q}-martingale with respect to \mathcal{F}_t, i.e., if $s < t$, then $\mathbf{E}_Q[X_t \mid \mathcal{F}_s] = X_s$.
