Math 122, Fall 2002
Problem Set 1
Due: Tuesday, September 3

1. Let log denote the base-10 logarithm. What is

\[\lim_{x \to \infty} \log \log x \] ?

Suppose that \(\log \log x = 4 \). Let \(n \) be the largest integer less than \(x \). How many digits does \(n \) have? Which is larger: \(n \) or the number of atoms in the universe?

2. Let \(n \) be the largest integer less than \(e^{100,000} \). How many digits does \(n \) have? You may use the fact that \(2.302585 < \ln 10 < 2.302586 \) (you can check this fact on your calculator).

3. Let

\[f(x) = \int_0^x 1000t^{999} \, dt. \]

What is \(f'(1) \)?

4. Let

\[f(x) = 67x^6 - 59x^5 + 982x^4 + 6x + 1. \]

Explain (without solving the equation!) why there exist real numbers \(s_1 < 0 < s_2 \) with \(f(s_1) = f(s_2) = 10 \).

5. Let \(f(x) \) be the function whose domain is the set of all real numbers, with \(f(0) = 0 \) and for \(x \neq 0 \),

\[f(x) = \sin \left(\frac{1}{x} \right). \]

Is \(f \) continuous at \(x = 0 \)? Is it differentiable at \(x = 0 \)? If so, what is \(f'(0) \)?

6. Do the same problem as 5 with except that for \(x \neq 0 \),

\[f(x) = x \sin \left(\frac{1}{x} \right). \]

7. Do the same problem as 5 with except that for \(x \neq 0 \),

\[f(x) = x^2 \sin \left(\frac{1}{x} \right). \]