Problem 1. Find the indicated derivatives.
1.a) (5 points) Let \(y(x) = x^5 + 2.5x + \pi^2 \). Find \(y'(x) \).

1.b) (6 points.) \(\frac{d}{d\theta} \sin(\cos(\theta)) \)

1.c) (10 points.) Let \(f(x) = 2\sin(2x) + e^{-x} + x \). Find \(f^{(n)}(x) \), for \(n = 1, 2, 3, 4 \) and 5. (Recall \(f^{(n)} \) denotes the \(n^{th} \) derivative of \(f \).)
Problem 2. Consider the function

\[f(x) = \begin{cases}
\sin(x) & \text{if } x < 0 \\
ax + b & \text{if } 0 \leq x < 1 \\
\frac{1}{2}x^2 + \frac{1}{2} & \text{if } 1 \leq x,
\end{cases} \]

where \(a \) and \(b \) are real numbers.

2.a) \((8 \text{ points})\) For what value of \(a \) and what value of \(b \) is \(f \) continuous at every point in its domain?

2.b) \((8 \text{ points})\) For the values of \(a \) and \(b \) found in 2.a), at which values of \(x \) is \(f \) differentiable?

2.c) \((8 \text{ points})\) For the values of \(a \) and \(b \) found in 2.a), write an expression for \(f'(x) \) on the domain found in part 2.b)
Problem 3. (9 points) Let \(g(x) = 2x^3 + 3x^2 - 12x + 1 \). Find all points \((x, g(x))\) at which the tangent to \(g \) is horizontal. Write equations for all such tangent lines.

Problem 4
4.a) (10 points) Let \(f(x) = \sqrt{x} \), with domain \([0, \infty)\). Use the definition of the derivative to compute \(f'(x) \).

4.b) (4 points) Are there any points in the domain of \(f \) which are not in the domain of \(f' \)? If so, which points?
Problem 5. \textit{(10 points)}

The figure above shows the graph of a function f; you do not know the equation for f. You do know the values of $f(x_0)$ and $f'(x_0)$. For some small h, the point $(x_0 + h, y)$ is on the line L, the tangent to the graph of f at x_0. Find an expression for y.

Problem 6. \textit{(10 points)} Let $f(x) = 2x^2 + x$. Let $x_0 = -1$ and let $\epsilon = \frac{1}{4}$. Find a real number $\delta > 0$ such that

\[|x - x_0| < \delta \text{ implies } |f(x) - f(x_0)| < \epsilon. \]

Show that your δ works.
Problem 7 (12 points)

As in the figure above, you are sitting in a tree and swinging a flashlight in the counterclockwise direction. The height of the end of the flashlight (which does not move as you swing) is 1 meter, and you swing the flashlight at an angular rate of 2π radians per second. Let θ be the angle between the downwards direction and the direction your flashlight is pointing. When $\theta = \pi/4$, how fast is the beam traveling over the ground?