Introduction to Thompson’s group

Ken Brown
Cornell University

Abstract

Forty years ago Richard Thompson introduced a fascinating discrete group F, which has become a test case for many questions in geometric group theory. I will describe F from several different points of view and state some known results and open problems.
1. Thompson’s definition

\[F < T < V \]

\(F \) is the group of associative laws, \(T \) allows cyclic rearrangements, \(V \) allows arbitrary rearrangements. We only consider \(F \).

\[
\begin{align*}
 x_0 &: a(bc) \rightarrow (ab)c \\
 x_1 &: a(b(cd)) \rightarrow a((bc)d) \\
 x_2 &: a(b(c(de))) \rightarrow a(b((cd)e))
\end{align*}
\]

Expansion: Replace \(a, b, c, \ldots \) by expressions.

\[
\begin{align*}
 A(BC) &\rightarrow (AB)C' \\
 \overline{a(b(c(de)))} &\rightarrow \overline{(ab)(c(de))} \\
 \overline{A(B(CD))} &\rightarrow A((BC)D) \\
 \overline{(ab)(c(de))} &\rightarrow \overline{(ab)((cd)e)}
\end{align*}
\]
Composition

\[
\begin{align*}
 \mathcal{F} & \rightarrow (ab)(c(de)) \\
 \mathcal{F} & \rightarrow (ab)((cd)e)
\end{align*}
\]

A relation:

\[
x_1x_0 = x_0x_2 \quad \text{or} \quad x_1^{x_0} = x_2
\]

More generally,

\[
x_nx_i = x_i x_{n+1} \quad \text{or} \quad x_i^{x_n} = x_{n+1} \quad (i < n)
\]

Fact: \(x_0, x_1, x_2, \ldots\) generate \(\mathcal{F}\), and these are defining relations.
2. Combinatorial group theory

\[F = \langle x_0, x_1, x_2, \ldots ; x_n^x = x_{n+1} \text{ for } i < n \rangle \]

\[x_n x_i \rightarrow x_i x_{n+1} \quad \text{(smaller subscripts first)} \]

\[x_i^{-1} x_n \rightarrow x_{n+1} x_i^{-1} \quad \text{(positive before negative)} \]

\[x_n^{-1} x_i \rightarrow x_i x_{n+1}^{-1} \quad \text{(positive before negative)} \]

\[x_i^{-1} x_n^{-1} \rightarrow x_{n+1}^{-1} x_i^{-1} \quad \text{(smaller subscripts last)} \]

Normal forms:

\[f = x_{i_1} x_{i_2} \cdots x_{i_k} x_{j_l}^{-1} \cdots x_{j_2}^{-1} x_{j_1}^{-1} \quad (i_1 \leq \cdots \leq i_k, \ j_1 \leq \cdots \leq j_l) \]

Unique if reduced: If \(x_i \) and \(x_i^{-1} \) both occur, then so does \(x_{i+1} \) or \(x_{i+1}^{-1} \).

\[x_0 x_1 x_1 x_3 x_5^{-1} x_4^{-1} x_1^{-1} x_0^{-1} = x_0 x_1 x_2 x_4^{-1} x_3^{-1} x_0^{-1} \]
3. Group of fractions

F is the group of right fractions of its positive semigroup P:

$$f \in F \implies f = pq^{-1} \quad (p, q \in P)$$

P has a concrete interpretation as the semigroup of binary forests (Belk, Brin).
Relations

\[x_1x_0 = x_0x_2 \]

\[x_2x_0 = x_0x_3 \]
4. Dyadic PL-homeomorphisms of I (or \mathbb{R}_+ or \mathbb{R})

$F \cong \text{PL}_2(I) \cong \text{PL}_2(\mathbb{R}_+) \cong \text{PL}_2(\mathbb{R})$. All slopes are integral powers of 2, all breakpoints have dyadic rational coordinates, integer translation near $\pm \infty$ if use \mathbb{R}_+ or \mathbb{R}.
$\text{PL}_2(I) \cong \text{PL}_2(\mathbb{R}_+) \cong \text{PL}_2(\mathbb{R})$
5. Tree and forest diagrams

Binary trees encode binary subdivisions or parenthesized expressions.

If use \mathbb{R}_+, get forest diagrams (but we knew this already).

If use \mathbb{R}, get doubly-infinite forest diagrams.
6. Universal conjugacy idempotent

(Freyd–Heller, Dydak) F is the universal example of a group with an endomorphism that is idempotent up to conjugacy:

\[\phi(x_n) = x_{n+1}, \quad \phi^2 = \phi^{x_0} \]

Homeomorphism interpretation: $\phi(f) = "f"$ concentrated on $[1/2, 1]$.

Universality: Given any $\phi: G \to G$ with ϕ^2 conjugate to ϕ, need x_0 so that

(1) \[\phi^2 = \phi^{x_0}, \]

then need $x_1 = \phi(x_0), x_2 = \phi(x_1), \ldots$. Equation (1) forces

\[x_{n+1} = x_n^{x_0} \quad (n > 0), \]

apply ϕ to get remaining relations.
7. Algebra automorphisms

(Galvin–Thompson) F is isomorphic to the group of order-preserving automorphisms of a free Cantor algebra:

$$\mu : X \times X \to X$$ \hspace{1cm} \text{(bijection)}

Everything splits uniquely as a product.

$$a = a_0 a_1 = a_0 (a_{10} a_{11}) \quad a = a_0 a_1 = (a_{00} a_{01}) a_1$$

Every tree diagram (or associative law) gives an automorphism.
Why is F interesting?

- Comes up in many ways.
- Has interesting properties.
- Almost every question is a challenge.
Known properties of F

1. Good finiteness properties: Two generators x_0, x_1. Two relations
\[x_1^{x_0} x_0 = x_1^{x_0} x_1 \] and
\[x_1^{x_0} x_0 x_0 = x_1^{x_0} x_0 x_1. \] And so on (Brown–Geoghegan).

2. F is “almost simple”.

\[1 \to F' \to F \to \mathbb{Z} \times \mathbb{Z} \to 0 \]

3. Although highly nonabelian, F admits a product $F \times F \to F$, associative up to conjugacy. [No identity; $1 \ast 1 = 1$, but $1 \ast f = \phi(f)$ in general.]

4. F has no free subgroups.

5. F is not elementary amenable.

6. Isoperimetric constant with respect to x_0, x_1 is $\leq 1/2$ (Belk–Brown).

7. The Poisson boundary for (some) symmetric random walks is nontrivial (Kaimanovich).

8. Homology is known (B–G): $H_n(F') \cong \mathbb{Z} \oplus \mathbb{Z}$ for all $n \geq 1$.
9. Homology and cohomology are known as rings (B): \(H_*(F) \) is an associative algebra (without identity) generated by \(e \) (degree 0), \(\alpha, \beta \) (degree 1), subject to relations

\[
e^2 = e \\
e\alpha = \beta e = 0 \\
\alpha e = \alpha \ , \quad e\beta = \beta
\]

Consequence: \(\alpha^2 = \beta^2 = 0 \), alternating products \(\alpha\beta\alpha \cdots \) and \(\beta\alpha\beta \cdots \) give basis in positive dimensions. \(H_*(F) \cong \wedge(a, b) \otimes \Gamma(u) \).

10. \(F \) is orderable.

11. Easy algorithm for computing length function (Fordham, Belk–Brown).

12. Growth series explicitly known for \(P \) (Burillo, B–B):

\[
p(x) = \frac{1 - x^2}{1 - 2x - x^2 + x^3}
\]
Open problems

1. Is F amenable?

2. Is the isoperimetric constant $1/2$? Is it $\geq 1/2$ for all generating sets?

3. Describe the Poisson boundary or other invariants of random walk.

4. Is F automatic?

5. What is the exponential growth rate of F?

6. Is the growth series rational?

7. Is it true that every subgroup of F is either elementary amenable or contains an isomorphic copy of F?

See

http://www.aimath.org/WWN/

for more (to appear).