1. Find all points on the graph of the function \(f(x) = 2 \cos x - \sin^2 x \) at which the tangent line is horizontal. (Note: \(\sin^2 x = (\sin x)^2 \).)

We use the chain rule to get
\[
\frac{d}{dx}(f(x)) = -2 \sin x - 2 \sin x \cos x.
\]

If a point on the graph of \(f(x) \) has a horizontal tangent line, then \(f'(x) = 0 \) at the \(x \)-value corresponding to that point. Setting \(f'(0) = 0 \) we have
\[
0 = -2 \sin x - 2 \sin x \cos x = -2 \sin x(1 + \cos x)
\]

So if \(-2 \sin x = 0\) or if \(1 + \cos x = 0\) then we have a horizontal tangent at that \(x \)-value.

\[-2 \sin x = 0 \Rightarrow \sin x = 0 \Rightarrow x = n\pi, \ n \text{ an integer.}\]

\[1 + \cos x = 0 \Rightarrow \cos x = -1 \Rightarrow x = \pi + 2n\pi, \ n \text{ an integer}\]

(these are odd multiples of \(\pi \)).

Since all of the integer multiples of \(\pi \) include all of the odd multiples of \(\pi \), \(f(x) \) has a horizontal tangent at all \(x = n\pi \) where \(n \) is an integer. This corresponds to the points \((2n\pi, 2)\) and \(((2n+1)\pi, -2)\).

2. Consider the function \(g(x) = |x|\sqrt{2-x^2} \).

(a) What is the domain of \(g(x) \)?

\(g(x) \) has domain all \(x \)-values where \(2 - x^2 \geq 0 \) since we can only take the square root of positive numbers. So
\[
2 - x^2 \geq 0 \iff 2 \geq x^2 \iff -\sqrt{2} \leq x \leq \sqrt{2}.
\]

So the domain of \(g(x) \) is the interval \([-\sqrt{2}, \sqrt{2}]\).

(b) Find an equation of the tangent line to the curve \(y = g(x) \) at the point \((1, 1)\).

Since \(0 \leq 1 \leq \sqrt{2} \), we can get rid of the absolute value sign and rewrite \(g(x) \) as
\[
g(x) = x\sqrt{2-x^2} \text{ when } 0 \leq x \leq \sqrt{2}.
\]

So for \(0 < x < \sqrt{2} \),
\[
g'(x) = \frac{1}{2}(2-x^2)^{-1/2} \cdot (-2x) + \sqrt{2-x^2} = \frac{-x^2}{\sqrt{2-x^2}} + \sqrt{2-x^2}.
\]

The tangent line to the curve \(y = g(x) \) at the point \((1, 1)\) has slope \(g'(1) = 0 \). In point-slope form the equation of the tangent line to \(y = g(x) \) at \((1, 1)\) is
\[
y - 1 = 0(x - 1) \Rightarrow y = 1.
\]
(c) Does \(g'(0) \) exist? (Show your work.)

When \(-\sqrt{2} \leq x \leq 0 \) or \(0 \leq x \leq \sqrt{2} \), we can write down a nice equation for \(g'(x) \) (see (a) for the second case). So we need to see whether or not \(g'(x) \) matches up on the left and right of \(x = 0 \). There are two ways to think of this: if we take the limit of the slope of the secant lines on the left of \(x = 0 \) and the right of \(x = 0 \), they must equal each other for \(g'(x) \) to exist, or if we take the limits of the function \(g'(0) \) as \(x \to 0 \) from the right and the left, they must equal each other for \(g'(0) \) to exist.

Method one:

\[
\lim_{h \to 0^+} \frac{g(0 + h) - g(0)}{h} = \lim_{h \to 0^+} \frac{h\sqrt{2 - h^2} - 0}{h} = \sqrt{2}
\]

\[
\lim_{h \to 0^-} \frac{g(0 + h) - g(0)}{h} = \lim_{h \to 0^-} \frac{-h\sqrt{2 - h^2} - 0}{h} = -\sqrt{2}
\]

Since the left and right hand limits of the slopes of secant lines through \((0, g(0))\) aren’t equal, this means that \(g'(0) \) DNE.

Method two:

\[
\lim_{x \to 0^+} g'(x) = \lim_{x \to 0^+} \left[\frac{-x^2}{\sqrt{2 - x^2}} + \sqrt{2 - x^2} \right] = \sqrt{2}
\]

\[
\lim_{x \to 0^-} g'(x) = \lim_{x \to 0^-} \left[\frac{x^2}{\sqrt{2 - x^2}} - \sqrt{2 - x^2} \right] = -\sqrt{2}
\]

Since \(g'(x) \) isn’t continuous at \(x = 0 \), this means that \(g'(0) \) DNE.

3. Suppose that

\[
\frac{d}{dx} [f(2x)] = 12x.
\]

Find \(f'(x) \).

We use the chain rule first to calculate \(\frac{d}{dx} [f(2x)] = f'(2x) \cdot 2 \). So

\[
= f'(2x) \cdot 2 = 12x,
\]

and

\[
f'(2x) = 6x = 3(2x).
\]

We make the substitution \(u = 2x \) and get \(f'(u) = 3u \), so \(f'(x) = 3x \).