Book exercises, pages 52-54: #2, 3, 4, 8, 9, 10, 17.

Two additional problems:

A1. Show that if two maps \(f, g : (X, x_0) \rightarrow (S^1, s_0) \) are homotopic just as maps \(X \rightarrow S^1 \) without regard to basepoints, then they are homotopic through basepoint-preserving maps via a homotopy \(f_t : (X, x_0) \rightarrow (S^1, s_0) \). [Hint: Use rotations of \(S^1 \).]

A2. Let \(X \) be a disk, annulus, or Moebius band, including the boundary circle or circles, which we denote \(\partial X \).

(a) For each point \(x \) in \(X \), show that the inclusion map \(X - \{x\} \hookrightarrow X \) induces an isomorphism on \(\pi_1 \) if and only if \(x \) is a point in \(\partial X \).

(b) If \(Y \) is also a disk, annulus, or Moebius band, and if \(f : X \rightarrow Y \) is a homeomorphism, show that \(f \) restricts to a homeomorphism \(\partial X \rightarrow \partial Y \).

(c) Show that the Moebius band is not homeomorphic to an annulus.