Exercise 1 from Sections 12 & 13, page 83
We will show that A is open by exhibiting it as a union of open sets. For each $x \in A$, let U_x be the open set containing x such that $U_x \subset A$. It is easy to see that $A = \bigcup_{x \in A} U_x$, so A is open. □

Exercise 4 from Sections 12 & 13, page 83
(a) Let $T = \bigcap \mathcal{T}_\alpha$. To show that T is a topology, we have to verify that T satisfies the three properties in the definition of a topology:

(1) Are \emptyset and X in T? Yes, because \emptyset and X are in \mathcal{T}_α for each α.

(2) Let $\{U_\beta\}$ be a collection of open sets in T. Since T is the intersection of the topologies \mathcal{T}_α, $\{U_\beta\}$ is a collection of open sets in \mathcal{T}_α for each α. Hence their union $\bigcup U_\beta$ is in \mathcal{T}_α for each α, and so $\bigcup U_\beta \in T$.

(3) Starting with a finite collection of open sets in T, the argument is as in (2) above.

This proof works for the intersection $\bigcap \mathcal{T}_\alpha$ because subsets in the intersection are open in each \mathcal{T}_α. For the union of even two topologies, say \mathcal{T}_1 and \mathcal{T}_2, we can have subsets $U_1 \in \mathcal{T}_1$ and $U_2 \in \mathcal{T}_2$ such that $U_1 \cup U_2$ is not in either \mathcal{T}_1 or \mathcal{T}_2. A simple example is furnished by the topologies $\mathcal{T}_1 = \{\emptyset, X, \{b\}\}$ and $\mathcal{T}_2 = \{\emptyset, X, \{a\}, \{b, c\}\}$ on the three point set $X = \{a, b, c\}$. Taking $U_1 = \{b\}$ and $U_2 = \{a\}$, their union $\{a, b\}$ is not in either of \mathcal{T}_1 or \mathcal{T}_2.

(c) Let \mathcal{T} be the topology on X generated by the subbasis $\mathcal{T}_1 \cup \mathcal{T}_2$. It is easily checked that \mathcal{T} is the smallest topology containing both \mathcal{T}_1 and \mathcal{T}_2. In this particular case,

$\mathcal{T}_1 \cup \mathcal{T}_2 = \{\emptyset, X, \{a\}, \{a, b\}, \{b, c\}\}$

and the only other subset that can be generated by taking unions of finite intersections is $\{b\}$. Hence the smallest topology containing both \mathcal{T}_1 and \mathcal{T}_2 is

$\{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$

The largest topology contained in both \mathcal{T}_1 and \mathcal{T}_2 is clearly their intersection, so it is

$\mathcal{T}_1 \cap \mathcal{T}_2 = \{\emptyset, X, \{a\}\}$

in this case.
Exercise 8 from Sections 12 & 13, page 83

(a) Let U be an open set in \mathbb{R} and x an element in U. By the definition of the standard topology on \mathbb{R}, there are real numbers r, s such that $x \in (r, s) \subset U$. Since the rationals are dense in \mathbb{R}, we can find rational numbers a, b in (r, x) and (x, s), respectively. This gives $x \in (a, b) \subset U$. In other words, given U open in \mathbb{R} and $x \in U$, we can find an $(a, b) \in \mathcal{B}$ such that $x \in (a, b) \subset U$. Hence, by Lemma 13.2, \mathcal{B} is a basis for the standard topology on \mathbb{R}.

(b) Given $x \in \mathbb{R}$, there are certainly rational numbers a, b such that $a < x < b$, so $x \in [a, b)$. Thus \mathbb{C} satisfies condition (1) for a basis. For condition (2), simply note that the intersection of two intervals of the form (a, b) is either empty or another interval of the same form. Hence \mathbb{C} is a basis for a topology on \mathbb{R}; call this topology \mathcal{T}.

Each element of \mathbb{C} is open in the lower limit topology, so \mathcal{T} is contained in the lower limit topology. To see that they are different, consider the open set $[r, s) \in \mathbb{R}_l$, where r is irrational. If $[r, s)$ were open in \mathcal{T}, then, since \mathbb{C} is a basis for \mathcal{T} and $r \in [r, s)$, there must be $a, b \in \mathbb{Q}$ such that $r \in [a, b) \subset [r, s)$. This is clearly impossible for rational a, so $[r, s)$ cannot be in \mathcal{T}.