1. (6 pts) Find the point on the line \(y = 4x + 5 \) that is closest to the origin.

Solution: Recall that the formula for the distance from the point \((x, y)\) to the origin is \(z = \sqrt{x^2 + y^2} \). So, in our case, \(z = \sqrt{x^2 + (4x + 5)^2} = \sqrt{17x^2 + 40x + 25} \). Then \(z' = \frac{34x + 40}{2\sqrt{17x^2 + 40x + 25}} \). The only critical point for \(z \) is at \(x = \frac{-20}{17} \), i.e. where \(z' = 0 \). Observe that the shortest distance to the origin must be for some \(x \) in between the y-axis intercept and the x-axis intercept, that is, for some \(x \in [-\frac{5}{4}, 0] \). Let us apply the Closed Interval Method to find the absolute minimum:

- \(z \left(-\frac{5}{4} \right) = \sqrt{17 \cdot \frac{25}{16} - 40 \cdot \frac{5}{4} + 25} = \frac{5}{4} \)
- \(z \left(-\frac{20}{17} \right) = \sqrt{17 \cdot \frac{400}{289} - 40 \cdot \frac{20}{17} + 25} = \frac{5\sqrt{17}}{17} \)
- \(z(0) = \sqrt{17 \cdot 0 + 40 \cdot 0 + 25} = 5 \)

Thus, the absolute minimum is achieved at \(x = -\frac{20}{17}, y = \frac{5}{17} \).

2. (2 points) Prove Rolle’s Theorem: Suppose \(y = f(x) \) is differentiable on \([a, b]\). If \(f(a) = f(b) = 0 \), then there is at least one number \(c \) between \(a \) and \(b \) at which \(f'(c) = 0 \).

Solution: By the Mean Value Theorem, there exists a \(c \) between \(a \) and \(b \) so that \(f'(c) = \frac{f(a) - f(b)}{a - b} = \frac{0 - 0}{a - b} = 0 \).

3. (2 points) Use 2 steps in Newton’s Method to estimate \(\sqrt{100} \), starting with \(x_1 = 2 \) (ie, find \(x_3 \)).

Solution: Let \(f(x) = x^7 - 100 \). Then approximating \(\sqrt[7]{100} \) is the same as approximating the root of \(f(x) \). We have \(f'(x) = 7x^6 \). Starting with \(x_1 = 2 \), we get:

\[
x_2 = 2 - \frac{2^7 - 100}{7 \cdot 2^6} = 1.9375
\]

\[
x_3 = 1.9375 - \frac{(1.9375)^7 - 100}{7 \cdot (1.9375)^6} = 1.930768
\]