1. Find a basis for the orthogonal complement of $U = \text{span}\{ \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix} \}$. Hint: create a matrix A with row $A = U$, then $\text{nul } A = U^\perp$.

2. Let A be a m by n matrix whose columns are mutually orthogonal (i.e. each column is orthogonal to every other column). What is A^tA?

3. Compute the orthogonal projection of the vector
\[
\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}
\]
onto the subspace U with basis
\[
\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}
\]
via the $A(A^tA)^{-1}A^t$ method.

4. Given the basis
\[
\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}
\]
of the subspace U, using the Gram-Schmidt process, find an orthonormal basis for the space.

5. Using the above basis, what is the orthogonal projection of
\[
\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}
\]
onto U? Don’t use the $A(A^tA)^{-1}A^t$ method.

6. In the case of an orthonormal basis, by your computation in question 2, $A^tA = I_n$. In this case, the projection matrix $A(A^tA)^{-1}A^t$ is just AA^t. Compute the same projection above using the orthonormal basis along with the $A(A^tA)^{-1}A^t$ method. Compare your two answers.