Problems

Problem 1. The stochastic matrix is \(P = \begin{bmatrix} 0.9 & 0.2 \\ 0.1 & 0.8 \end{bmatrix} \).

The situation of the TA being fine now is represented by the probability vector \(v = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \). Then the probability of him being fine after one more solution is \(Pv = \begin{bmatrix} 0.9 \\ 0.1 \end{bmatrix} \).

If there is a 30% chance the TA is sad now, it is represented by the vector \(u = \begin{bmatrix} 0.7 \\ 0.3 \end{bmatrix} \). Since \(Pu = \begin{bmatrix} 0.69 \\ 0.31 \end{bmatrix} \), the probability of the TA being fine after one more solution is 69%.

The equilibrium vector \(q \) satisfies the equation \(Pq = q \). Solving the system of equations \((P - I)q = 0\), i.e. finding the null space of \(P - I = \begin{bmatrix} -0.1 & 0.2 \\ 0.1 & -0.2 \end{bmatrix} \) we see that \(q = \begin{bmatrix} 2/3 \\ 1/3 \end{bmatrix} \). Thus eventually TA will be spending 1/3 of his time frustrated. Not too bad.

Problem 2. Suppose we have a linear combination
\[c_1(v_1 + 3v_2 - v_3) + c_2(-v_1 - 2v_2 + v_3) + c_3(v_2 + 2v_3) = 0. \]

We would like to know whether this combination can be non-trivial, i.e. whether we can find not all zero scalars \(c_1, c_2, c_3 \) making the equation above true. We can re-write this equation as
\[(c_1 - c_2)v_1 + (3c_1 - 2c_2 + c_3)v_2 + (-c_1 + c_2 + 2c_3)v_3 = 0 \]

But we know that the vectors \(v_1, v_2, v_3 \) are linearly independent. Therefore for the equation above to be true we must have \(c_1 - c_2 = 0, 3c_1 - 2c_2 + c_3 = 0 \) and \(-c_1 + c_2 + 2c_3 = 0 \). For which \(c_1, c_2, c_3 \) can this be?

In other words, we are really asking for solutions of the homogeneous system of equations
\[
\begin{bmatrix}
1 & -1 & 0 \\
3 & -2 & 1 \\
-1 & 1 & 2
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2 \\
c_3
\end{bmatrix}
= \begin{bmatrix} 0 \\
0 \\
0
\end{bmatrix}
\]

Row reduce, see that each column is pivotal, so there are no non-trivial solutions, so \(c_1 = c_2 = c_3 = 0 \), and so the required vectors are linearly independent.

Problem 3. We have \(A - 2I = \begin{bmatrix} -1 & 2 \\ 3 & -6 \end{bmatrix} \). This matrix has non-trivial null space (for example, because \(\det(A - 2I) = 0 \)). So \(\lambda = 2 \) is an eigenvalue.

Problem 4. \(\lambda = 1 \) and \(\lambda = 3 \) are the only eigenvalues of \(A \).

Let’s find an eigenvector for \(\lambda = 1 \). We need to find \(v \) s.t. \(Av = \lambda v \), i.e. we are looking for null space of \(A - I = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \). Row reduce, find that the null space consists of vectors of the form \(x_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} \). So for example, \(\begin{bmatrix} 2 \\ -2 \end{bmatrix} \) is an eigenvector. Any other non-zero multiple of this one would work.

For \(\lambda = 3 \) we can take \(v = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \).

Problem 5. For a number \(\lambda \) to be an eigenvalue, we need the matrix
\[
A - \lambda I = \begin{bmatrix}
1 - \lambda & 3 & -3 \\
0 & 2 - \lambda & 1 \\
0 & 0 & 3 - \lambda
\end{bmatrix}
\]
to have non-trivial null-space. In other words, we want to have some free variables in the corresponding homogeneous system, or equivalently we want to have some non-pivotal columns. If λ is not equal 1, 2, 3 then every column would be pivotal. If $\lambda = 1, 2$ or 3, one of the columns would be non-pivotal. So the eigenvalues are 1, 2, 3.

Since eigenvalues are all distinct, the corresponding eigenvectors are linearly independent.

Problem 6. Number 0 is an eigenvalue means that for some non-zero vector $v \neq 0$ one has $Av = 0 \cdot v = 0$. Thus A has non-trivial null space, and so can’t be invertible.

Problem 7. The matrix A is invertible, hence non of the eigenvalues $\lambda_1, \ldots, \lambda_n$ are zero. Now, if $Av = \lambda v$ and A is invertible, we can multiply $Av = \lambda v$ by A^{-1} and get $v = \lambda A^{-1}v$, and so $A^{-1}v = \frac{1}{\lambda} v$. So $\frac{1}{\lambda_1}, \ldots, \frac{1}{\lambda_n}$ are the eigenvalues of A^{-1}.

Problem 8. Equilibrium vector is an eigenvector corresponding to eigenvalue 1.

Problem 9.
- False
- False
- True
- False

Problem 10. Transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ reflecting with respect to the line $x = y$ preserves any vector on this line. So $v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector, and since it is being preserved, i.e. $T(v) = v$, the eigenvalue is 1. The other line that is preserved is the line $x = -y$, since it is perpendicular to $x = y$. Each vector u on the line $x = -y$ is reflected, i.e. gets mapped to $-u$. So for example $u = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ is an eigenvector, with the eigenvalue $\lambda = -1$.

Transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ rotating around the y-axis by the angle $\pi/2$ preserves the y-axis, so non-zero vector on this axis (for example $v = [0, 1, 0]^T$) will be eigenvectors with the eigenvalue 1.

Problem 11. Matrix A is called nilpotent if $A^n = 0$ for some number n. Give an example of a 3×3 non-zero nilpotent matrix. What are the eigenvalues of any nilpotent matrix A?

$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ is non-zero nilpotent, since $A^2 = 0$. If $Av = \lambda v$ for some non-zero $v \neq 0$, then $A^2v = A(\lambda v) = \lambda^2 v$, $A^3v = \lambda^3 v$, et.c. Since A is nilpotent, at some step we get $A^n = 0$, and so we will be looking at the equation $0 = \lambda^n v$. Since $v \neq 0$, then $\lambda^n = 0$, and so $\lambda = 0$. Thus the only eigenvalue nilpotent matrix can have is 0.