1. Let \(g \) be the ABACAB function of three \(n \times n \) matrices:

\[
g(A, B, C) = ABACAB
\]

a [5 pts]. If you wrote down the Jacobian of \(g \) – but don’t! – how big a matrix would it be (what by what)?

Answer. \(3n^2 \times n^2 \).

[g eats three \(n \times n \) matrices and produces one.]

1b [15 pts]. Compute the derivative of \(g \), at every \((A, B, C) \). Your answer should (had better) be a linear transformation of its inputs.

Answer. Let’s perturb by \((H_A, H_B, H_C) \). Then

\[
\lim_{\varepsilon \to 0} \frac{g(A + \varepsilon H_A, B + \varepsilon H_B, C + \varepsilon H_C) - g(A, B, C)}{\varepsilon}
\]

\[
= \lim_{\varepsilon \to 0} \frac{ABACAB + \varepsilon (H_A BACAB + A H_B ACAB + A B H_A CAB + A B A H_C AB + A B A C A H_B B + A B A C A H_B)}{\varepsilon}
\]

\[
= H_A BACAB + A H_B ACAB + A B H_A CAB + A B A H_C AB + A B A C A H_B + A B A C A H_B
\]

i.e. the derivative at \((A, B, C) \) is the linear transformation

\((H_A, H_B, H_C) \mapsto H_A BACAB + A H_B ACAB + A B H_A CAB + A B A H_C AB + A B A C A H_B + A B A C A H_B \)

[Sanity check: consider \(n = 1 \) where things commute, so \(g(A, B, C) = A^3 B^2 C \), and this would give \(3A^2 B^2 C H_A + 2A^3 B C H_B + A^3 B^2 C \) Then the partial derivatives are \(\frac{da}{dA} = 3A^2 B^2 C, \frac{da}{dB} = 2A^3 B C, \frac{da}{dC} = A^3 B^2 \), which are indeed the coefficients in front of \(H_A, H_B, H_C \).]
2. Let \(C \subseteq \mathbb{R}^n \) be an open set containing \(\vec{0} \), and for \(\lambda \in \mathbb{R}_+ \) and \(\vec{u} \in \mathbb{R}^n \), define
\[
\vec{u} + \lambda C := \{ \vec{u} + \lambda \vec{c} : \vec{c} \in C \}.
\]
Call a set \(U \subseteq \mathbb{R}^n \) \(C\)-open if for every \(\vec{u} \in U \), there exists a \(\lambda > 0 \) such that \(U \supseteq \vec{u} + \lambda C \). We're given that \(\vec{u} + \lambda C \subseteq U \), so for any \(\vec{u} + \lambda C \subseteq U \), there exists a \(\lambda > 0 \) such that \(\vec{u} + \lambda C \subseteq U \). And by the way that's \(\vec{u} + rB_1(\vec{0}) \).

Answer. We need to show that for any \(\vec{u} \in U \), there exists a ball \(B_{r>0}(\vec{u}) \subseteq U \). And by the way that's \(\vec{u} + rB_1(\vec{0}) \).

What we're given is that there exists a \(\vec{u} + \lambda C \subseteq U \). So if we can find a ball \(\vec{u} + rB_1(\vec{0}) \subseteq \vec{u} + \lambda C \), i.e. \(rB_1(\vec{0}) \subseteq \lambda C \), then we're done.

Since \(C \) is open and \(\vec{0} \in C \), we know there's a ball \(B_r(\vec{0}) \subseteq C \). Scaling the vectors in both, we know \(\lambda B_r(\vec{0}) \subseteq \lambda C \). So if we can find a ball \(rB_1(\vec{0}) \subseteq \lambda B_r(\vec{0}) \), then we're done.

That's easy: take \(r = \lambda s \). Then those balls are equal.

2b [20 pts]. If \(C \) is bounded, and \(U \) is open, prove \(U \) is \(C \)-open.

Answer. We need to show that for any \(\vec{u} \in U \), there exists a \(\lambda > 0 \) with \(\vec{u} + \lambda C \subseteq U \).

We're given that \(C \) is bounded, i.e., there exists a radius \(R > 0 \) such that \(C \subseteq B_R(\vec{0}) \). Also that \(U \) is open, so there exists a ball \(B_s(\vec{u}) \subseteq U \) for some \(s > 0 \).

So we'd like to choose \(\lambda \) so that \(\vec{u} + \lambda C \subseteq B_s(\vec{u}) \). We know \(\vec{u} + \lambda C \subseteq \vec{u} + \lambda B_{10}(\vec{0}) = B_{\lambda R}(\vec{u}) \), so it's enough to get \(B_{\lambda R}(\vec{u}) \subseteq B_s(\vec{u}) \). As in (2a), that's easy: take \(\lambda = s/R \).

2c [15 pts]. Give an example of a \(C \) and an open set \(U \) that isn't \(C \)-open.

Answer. By (2b), we need \(C \) unbounded. The dumbest example is \(C = \mathbb{R}^n \) (for \(n > 0 \)). Then every \(\vec{u} + \lambda C = \mathbb{R}^n \), too. So as long as \(U \neq \emptyset, \mathbb{R}^n \), it's a counterexample [but you can't stop there! e.g. for \(n \) there is no such \(U \); let's say \(U = (0, 1) \subseteq \mathbb{R}^1 \)].

3. Let \(A \) be an \(n \times n \) matrix.

For \(S \subseteq \mathbb{R}^n \) a linear subspace, define
\[
S^* := \{ \vec{v} \in \mathbb{R}^n : \forall \vec{s} \in S, \vec{s} \cdot A\vec{v} = 0 \}
\]
a [10 pts]. Prove that \(S^* \) is a linear subspace too. (Meaning: show that it satisfies the short list of requirements.)

Answer. There are three requirements: it should have \(\vec{0} \), be closed under multiplication by any scalar, and closed under addition.

\[
\forall \vec{s} \in S, \vec{s} \cdot A\vec{0} = \vec{s} \cdot \vec{0} = 0 \quad \checkmark
\]

If \(\vec{v} \in S^* \) and \(c \in \mathbb{R} \), then \(\forall \vec{s} \in S \), we have
\[
\vec{s} \cdot A(c\vec{v}) = \vec{s} \cdot cA\vec{v} = c \vec{s} \cdot A\vec{v} = c \vec{0} = 0.
\]

So \(c\vec{v} \in S^* \) too. \(\checkmark \)

If \(\vec{v}_1, \vec{v}_2 \in S^* \), then \(\forall \vec{s} \in S \), we have
\[
\vec{s} \cdot A(\vec{v}_1 + \vec{v}_2) = \vec{s} \cdot (A\vec{v}_1 + A\vec{v}_2) = \vec{s} \cdot A\vec{v}_1 + \vec{s} \cdot A\vec{v}_2 = 0 + 0 = 0.
\]

\(\checkmark \)
So $\vec{v}_1 + \vec{v}_2 \in S^\ast$ too. ✓

3b [15 pts]. If A is symmetric, prove that $(S^\ast)^\ast \geq S$. (Meaning: assume $\vec{b} \in S$, and prove $\vec{b} \in (S^\ast)^\ast$.)

Answer. Assume $\vec{b} \in S$. We want to know that $\vec{b} \in (S^\ast)^\ast$, i.e. if $\vec{t} \in S^\ast$, then $\vec{t} \cdot A\vec{b} = 0$.

What we know for sure is that $\vec{b} \cdot A\vec{t} = 0$, since $\vec{t} \in S^\ast$.

[Those two equations say different things about \vec{b}, since it’s on the right in one and the left in the other. That, and the fact that we’re given $A = A^\top$, suggest using transpose.]

We can rewrite $\vec{b} \cdot A\vec{v}$ as the entry of the 1×1 matrix $\vec{b}^\top A\vec{v}$, thinking of \vec{b}, \vec{v} as skinny matrices. Then since a 1×1 matrix is symmetric,

$$\vec{b}^\top A\vec{v} = (\vec{b}^\top A\vec{v})^\top = \vec{v}^\top A^\top \vec{b}$$

then use $A = A^\top$ and learn $\vec{b} \cdot A\vec{v} = \vec{v} \cdot A\vec{b}$.

Since $\vec{b} \cdot A\vec{t} = 0$, and $\vec{b} \cdot A\vec{v} = \vec{v} \cdot A\vec{b}$, we learn $\vec{t} \cdot A\vec{b} = 0$ for all $\vec{t} \in S^\ast$, i.e. $\vec{b} \in (S^\ast)^\ast$.

3c [10 pts]. Give an example of n, A symmetric, and S such that $(S^\ast)^\ast \neq S$.

Answer. $n = 1$, $A = [0]$, $S = \{\vec{0}\}$. Then $S^\ast = (S^\ast)^\ast = \mathbb{R}^1 > S$.

[Thought process: we know $(S^\ast)^\ast > S$, by (3b). For it to grow in this way, we need being-in-V^\ast to be easy for $V = S, S^\ast$. The $= 0$ condition in the definition of V^\ast gets easier to satisfy as $A\vec{v}$ gets to be $\vec{0}$ more often. The easiest way to ensure that is to take A the zero matrix.

In fact, $(S^\ast)^\ast = S$ for all $S \leq \mathbb{R}^n$ iff A is invertible.]