Degree of maps from S^1 to S^1

We want to define a homotopy invariant for continuous maps $S^1 \to S^1$ to classify them. Follow the instructions and answer the questions (1) – (8).

Let $S^1 := \{e^{2\pi i \theta} \in \mathbb{C} \}$. Let $x_0 \in S^1$ and let α be a path from $1 \in S^1$ to x_0. Let γ be a generator of $\pi_1(S^1, 1)$.

(1) Show that $\hat{\alpha}(\gamma)$ is a generator of $\pi_1(S^1, x_0)$. See Appendix *1.

(2) Show that $\hat{\alpha}(\gamma)$ depends only on x_0 (not on paths α).

By (2), it is OK to write $\gamma_{x_0} := \hat{\alpha}(\gamma)$ for any path α from 1 to x_0. Now let $h : S^1 \to S^1$ be a continuous map. Let $x_0 \in S^1$ and let $x_1 := h(x_0)$. Define degree of h to be an integer d such that $h_*(\gamma_{x_0}) = (\gamma_{x_1})^d$.

It is well-defined because, by (1), γ_{x_1} is a generator of $\pi_1(S^1, x_1)$.

(3) Show that d is independent of the choice of x_0.

(4) Show that d is independent of the choice of γ.

By (3) and (4), we have defined the degree of a map h, which is independent of all choices. Now we consider the properties of this degree:

(5) Show that if $h, k : S^1 \to S^1$ are homotopic, they have the same degree.

(6) Show that $\deg h \circ k = \deg h \cdot \deg k$.

(7) Compute the degree of the map $h(z) = z^n$ where $n \in \mathbb{Z}$.

(8) (Optional) Show that if $h, k : S^1 \to S^1$ have the same degree, then they are homotopic.

(5) says the degree is a homotopy invariant, i.e. if h, k have the different degrees, they can not be homotopic to each other. Together with (7) and (8), it classifies all homotopy equivalence classes of maps $S^1 \to S^1$.

(6) says associating degrees have a certain algebraic structure.

Appendix

*1 An infinite cyclic group G is a group isomorphic to $(\mathbb{Z}, +)$. We say $g \in G$ is a generator, if $G = \{g^n \mid n \in \mathbb{Z} \}$. If g is a generator, then g^{-1} is also a generator and any generator is either g or g^{-1}.