Math 424: Homework due on 2/25

1) From the Textbook: Chapter 2: 4, 5.

2) The goal of this problem is to find the Fourier transform of the function \(f \) defined by: \(f(x) = e^{-x^2} \). Recall that \(\int_{-\infty}^{\infty} e^{-x^2} \, dx = \frac{1}{\sqrt{2}} \).

 (a) Find \(C = \hat{f}(0) \).

 (b) Show that \(\hat{f}(\gamma) \) is a differentiable function of \(\gamma \) and find \(\frac{d\hat{f}}{d\gamma} \) for each \(\gamma \in \mathbb{R} \).

 (c) Use part b, to show that \(\hat{f}(\gamma) \) is a solution to the first order differential equation \(Y'(\gamma) + \frac{1}{2} \gamma Y(\gamma) = 0 \).

 (d) Find the general solution of the previous equation.

 (e) Use part a, d, to find \(\hat{f}(\gamma) \).

3) Let \(f \in L^1(\mathbb{R}) \), \(a > 0 \), \(b, c \in \mathbb{R} \) be given. Define the following functions \(f_1(x) = a^{1/2} f(ax) \), \(f_2(x) = f(x-b) \), and \(f_3(x) = e^{2\pi i cx} f(x) \).

 (a) Show that \(f_1, f_2 \) and \(f_3 \) are all in \(L^1(\mathbb{R}) \) and find the \(L^1 \)-norm of each of them.

 (b) Find the Fourier transform of \(f_1, f_2 \) and \(f_3 \) in terms of the Fourier transform of \(f \).

 (c) Applications. Find the Fourier transforms of \(f, g \) and \(h \) where \(f(x) = e^{-2x^2} \), \(g(x) = e^{\pi ix} \chi_{[0,1]}(x) \), and \(h(x) = \chi_{[3,4]}(x) \).