4. (4 points) Solution:
(a)
\[\int_C \frac{2dz}{z^2 + 4iz - 1} = \int_0^{2\pi} \frac{2ie^{i\theta} d\theta}{e^{2i\theta} + 4ie^{i\theta} - 1} = \int_0^{2\pi} \frac{d\theta}{2 + \sin \theta} \]

\(z^2 + 4iz - 1 \) has two roots \(-2 + \sqrt{3}i\) and \(-2 - \sqrt{3}i\). Only \((\sqrt{3} - 2)i\) is inside the unit disc. By (2.4), \(Resf((\sqrt{3} - 2)i) = 1/\sqrt{3} \). So \(\int_0^{2\pi} \frac{d\theta}{2 + \sin \theta} = 2\pi/\sqrt{3} \).

(b)
\[\int_0^{2\pi} \frac{d\theta}{2 + \sin \theta} = \int_0^{2\pi} \frac{d\theta}{2 + \cos(\theta - \pi/2)} = \int_0^{3\pi/2} \frac{d\alpha}{2 + \cos \alpha} + \int_{-\pi/2}^{0} \frac{d\alpha}{2 + \cos(\alpha + 2\pi)} = \int_0^{2\pi} \frac{d\alpha}{2 + \cos \alpha} = 2\pi/\sqrt{3} \]

where the last step is by (2.7).

6. (4 points) Proof: Just follow the hint. First of all, LHS of the equality in the hint is \(2\pi i \times Res(f; i) = 2\pi i \times 1/(2i) = \pi \). The first term of RHS tends to \(\int_\infty^{-\infty} \frac{dz}{1+z^2} \) as \(R \) goes to \(\infty \). To see the second term goes to 0 as \(R \) goes to \(\infty \), we note:

\[\left| \int_{c\infty} \frac{dz}{1+z^2} \right| \leq \int_0^{\pi} \left| \frac{iRe^{i\theta}}{1+R^2e^{2i\theta}} \right| d\theta \leq \int_0^{\pi} \frac{R}{R^2 - 1} d\theta \leq \frac{\pi R}{R^2 - 1} \to 0 \]
as \(R \) goes to \(\infty \).
1. (5 points) Remark: The solutions here are omitted since it’s sort of tedious computation. And the contours can always be chosen as \(\{ z : z \in \mathbb{R}, -R < z < R \} \cup \{ z : z = Re^{i\theta}, 0 \leq \theta \leq \pi \} \). The answers for the integrals are \(\pi/\sqrt{2}, 2\pi/3, \pi/3, \pi/2, \pi/2 \).

3. (5 points) Proof: As usual, we take the contour \(C \) as \(\{ z : z \in \mathbb{R}, -R < z < R \} \cup \{ z : z = Re^{i\theta}, 0 \leq \theta \leq \pi \} \), and the function \(f(z) = \frac{e^{iz}}{(z^2 + a^2)(z + bi)} \).

\(f(z) \) has singularities \(ai, -ai, bi, \) and \(bi \). Since the real parts of \(a \) and \(b \) are both positive, the singularities falling into \(C \) are \(ai \) and \(bi \). So,

\[
\int_C f(z)dz = 2\pi i \left[\frac{e^{iz}}{(z^2 + a^2)(z + bi)} \bigg|_{z=bi} + \frac{e^{iz}}{(z^2 + b^2)(z + ai)} \bigg|_{z=ai} \right]
\]

We define \(\{ z : z \in \mathbb{R}, -R < z < R \} \) as II, and \(\{ z : z = Re^{i\theta}, 0 \leq \theta \leq \pi \} \) as I. And note

\[
\left| \int_I f(z)dz \right| = \left| \int_0^\pi \frac{e^{i(R \cos \theta + i \sin \theta)}}{(R^2 e^{2bi} + a^2)(R^2 e^{2bi} + b^2)} iRe^{i\theta} d\theta \right|
\]

\[
\leq \int_0^\pi \frac{Re^{-R \sin \theta}}{(R^2 - |a|^2)(R^2 - |b|^2)} d\theta \leq \frac{\pi}{(R^2 - |a|^2)(R^2 - |b|^2)} \frac{R}{R^2 - |b|^2}
\]

It’s clear that the last term goes to 0 as \(R \) goes to \(+\infty \). So, we finally get

\[
\frac{\pi}{a^2 - b^2} \left(\frac{e^{-b}}{b} - \frac{e^{-a}}{a} \right) = \int_{-\infty}^{+\infty} \frac{e^{ix}}{(x^2 + a^2)(x^2 + b^2)} dx = \int_{-\infty}^{+\infty} \frac{\cos x}{(x^2 + a^2)(x^2 + b^2)} dx
\]

The last ”\(= \)” is because \(\frac{\sin x}{(x^2 + a^2)(x^2 + b^2)} \) is an odd function and it vanishes under the integration over the whole real line.

6. (9 points)

(a) If \(a \) and \(b \) are unequal complex numbers with positive real parts, prove

\[
\int_{-\infty}^{\infty} \frac{x \sin x dx}{(x^2 + a^2)(x^2 + b^2)} = \pi \left(\frac{e^{-a} - e^{-b}}{b^2 - a^2} \right)
\]

Proof: Let \(C_R \) be the semicircular contour \(z = Re^{i\theta}, 0 \leq \theta \leq \pi, \) and \(\pi = C_R \cup [-R, R] \). Then \((x^2 + a^2)(x^2 + b^2) = 0\) if and only \(x = ai, -ai, bi, \) or \(-bi\). Since \(Rea, Reb > 0 \), we have \(Im(ai), Im(bi) > 0 \). So only \(ai, bi \) fall inside \(C \) when \(R \) is large enough. Hence

\[
\int_{C} \frac{ze^{iz}dz}{(z^2 + a^2)(z^2 + b^2)} = 2\pi i[Res(f(ai) + Res(f(bi))] = \pi i \left(\frac{e^{-a} - e^{-b}}{b^2 - a^2} \right)
\]
Meanwhile
\[\left| \int_{C_R} \frac{ze^{iz}dz}{(z^2 + a^2)(z^2 + b^2)} \right| \leq \int_0^\pi \frac{Rd\theta}{(R^2 - |a|^2)(R^2 - |b|^2)} \to 0 \]
as \(R \to \infty \). So let \(R \to \infty \), we get
\[\int_{-\infty}^{\infty} \frac{xe^{ix}dx}{(x^2 + a^2)(x^2 + b^2)} = \pi i \frac{e^{-a} - e^{-b}}{b^2 - a^2} \]
Equating the imaginary part, we get
\[\int_{-\infty}^{\infty} \frac{x \sin x dx}{(x^2 + a^2)(x^2 + b^2)} = \pi \frac{e^{-a} - e^{-b}}{b^2 - a^2} \]

(b) By l’Hospital’s rule, find the limit of the right-hand member as \(b \to a \) in part (a). Then determine whether this limit agrees with the value of the integral for \(b = a \).
Solution: By the same method as in part (a), we can find
\[\int_{-\infty}^{\infty} \frac{x \sin x dx}{(x^2 + a^2)^2} = \pi e^{-a} \frac{1}{2a} \]
This is exactly the limit of \(\frac{\pi(e^{-a} - e^{-b})}{b^2 - a^2} \) as \(b \to a \), by l’Hospital rule.

(c) If \(f \) denotes the integrand in part (a), and \(I \) denotes the value of the integral, show that
\[\left| \int_{-R}^{R} f(x)dx - I \right| \leq \frac{\pi R}{(R^2 - |a|^2)(R^2 - |b|^2)} \]
where \(R > \max(|a|, |b|) \).
Proof:
\[\left| \int_{-R}^{R} f(x)dx - I \right| \leq \left| \int_C f(x)dx - I \right| + \left| \int_{C_R} \frac{ze^{iz}}{(z^2 + a^2)(z^2 + b^2)} |dz| \right| \leq \frac{R\pi}{(R^2 - |a|^2)(R^2 - |b|^2)} \]

Section 4.4

1. (3 points) Proof: Set \(R = e^t \). Then
\[\frac{(\log R)^m}{R} = \frac{t^m}{e^t} < \frac{(m + 1)!}{t} \to 0 \]
as \(t \to \infty \). So \(\lim_{R \to \infty} \frac{(\log R)^m}{R} = 0 \) along \(R = e^t \forall m \in \{0, 1, 2, 3, \ldots\} \), and set
\(\rho = R^{-1} \), then \(|\rho (\log \rho)^m| = \frac{(\log R)^m}{R} \). So \(\lim_{\rho \to 0^+} |\rho (\log \rho)^m| = \lim_{R \to \infty} \frac{(\log R)^m}{R} = 0 \). \(\square \)

Additional Problems on Chapter 4

4.1 (4 points) Proof: In \(\{ |z| \leq r \} \), \(f(z) \) can be written as \(\prod_{i=1}^{n} (z - a_i) h(z) \) where \(h \) is analytic in \(\{ |z| \leq r \} \). This shows \(g \) is analytic in \(\{ |z| \leq r \} \) except for removable singularities. Since \(r^2 / \bar{a}_i \) is outside \(\{ |z| = r \} \) \(i = 1, \ldots, n \) and \(h(z) \neq 0 \) in \(\{ |z| < r \} \), \(g(z) \) does not vanish in \(\{ |z| < r \} \). Finally \(|g(z)| = |f(z)| \) on \(\{ |z| = r \} \), since on \(|z| = r \), \(\left| \frac{r^2 - \bar{a}_i z}{r(t - a_i)} \right| = 1 \) by Chapter 1 problem 2.1, and \(|a_i / r| < 1, |z / r| = 1 \). \(\square \)

4.2 (4 points) Proof: \(|g(0)| = |r^n f(0) / \prod_{i=1}^{n} a_i| \). Meanwhile by maximum principle, \(|g(0)| \leq \max_{|z| = r} |g(z)| = \max_{|z| = r} |f(z)| = M(r) \). So we get \(r^n / |a_1 \cdots a_n| \leq M(r) / |f(0)| \). \(\square \)

Section 4.5

1. (6 points) Solution: Let \(D = \mathbb{C} \setminus [-\infty, \infty] \), then \(D \) is an analytic branch for \(z^{a-1} \). We use the same notation as in example 5.1. Then

\[
I = \int_C \frac{z^{a-1}}{1 - z} \, dz = -2\pi i
\]

Furthermore,

\[
I = \int_{R}^{\epsilon} \frac{r e^{i\pi} z^{a-1} e^{i\pi}}{1 + r} \, dr + \int_{R}^{\epsilon} \frac{(r e^{-i\pi}) z^{a-1}}{1 + r} e^{-i\pi} \, dr + J_1 + J_2
\]

In \(D \), \(z^{a-1} = e^{(a-1)(\log |z| + iarg z)} \) where \(-\pi < arg z < \pi \). So the first integral

\[
= e^{i\pi} e^{(a-1)(\log r + \pi)} / (1 + r) = e^{(p-1) \log r - \pi q} e^{(q \log r + \pi p) i} / (1 + r)
\]

We do similar thing to the second integral and get

\[
I = \int_{\epsilon}^{R} \frac{r^{p-1} e^{iq \log r} (-e^{-\pi q + \pi p i} + e^{\pi q - \pi p i})}{1 + r} \, dr + J_1 + J_2
\]

On the circle of radius \(R \) and \(\epsilon \), respectively,

\[
\left| \frac{z^{a-1}}{1 - z} \right| \leq \frac{R^{p-1} e^{\pi |q|}}{R - 1} \quad \left| \frac{z^{a-1}}{1 - z} \right| \leq \frac{\epsilon^{p-1} e^{\pi |q|}}{1 - \epsilon}
\]

Hence \(|J_1| \leq \frac{2\pi R e^{\pi |q|}}{R - 1} \), \(|J_2| \leq \frac{2\pi \epsilon e^{\pi |q|}}{1 - \epsilon} \). Since \(0 < p < 1 \), by letting \(R \to \infty \) and \(\epsilon \to 0 \), we get

\[
\int_{0}^{\infty} \frac{r^{p-1} e^{iq \log r} (-e^{\pi q - \pi p i} + e^{-\pi q + \pi p i})}{1 + r} \, dr = -2\pi i
\]
By \(\sin \pi(p + iq) = \sin \pi p \cosh \pi q + i \cos \pi p \sinh \pi q \),

\[
\int_0^\infty \frac{t^{p-1}}{1 + r} e^{iq \log r} \, dr = \frac{2\pi i}{e^{-\pi q + \pi p} - e^{\pi q - \pi p}} = \frac{\pi}{\sin \pi(p + iq)} = \frac{\pi}{\sin \pi p \cosh \pi q + i \cos \pi p \sinh \pi q}
\]

Equating the real and imaginary parts, we get

\[
\int_0^\infty \frac{t^{p-1}}{t + 1} \cos(q \log t) \, dt = \frac{\pi \sin \pi p \cosh \pi q}{(\sin \pi p \cosh \pi q)^2 + (\cos \pi p \sinh \pi q)^2}
\]

\[
\int_0^\infty \frac{t^{p-1}}{t + 1} \sin(q \log t) \, dt = \frac{-\pi \cos \pi p \sinh \pi q}{(\sin \pi p \cosh \pi q)^2 + (\cos \pi p \sinh \pi q)^2}
\]

5. (6 points) Proof: Let \(f(z) = \sqrt{z} \log z/(1+z)^2 \). Let \(D = \mathbb{C}[0, \infty] \). Then \(D \) is an analytic branch of \(f(z) \). We let \(C \) be the contour enclosed by circles of radius \(R \) and radius \(\varepsilon \). Imitating example 5.1, we cut \(C \) into two parts, one part contains \(-1\), and the other one doesn’t. Then \(\int_C f(z) \, dz = 2\pi i \text{Res}(f, -1) \).

\(\text{Res}(f, -1) = (z^{1/2} \log z)|_{z=-1} = (z^{1/2}/z + z^{1/2} \log z/2z)|_{z=-1} = \pi/2 - i \). So

\[
\pi^2 i + 2\pi = \int_0^R \frac{\sqrt{x} \log x}{(1 + x)^2} \, dx - \int_0^R \frac{(xe^{2\pi i})^{1/2} \log(xe^{2\pi i})}{(1 + x)^2} \, dx + J_1 + J_2
\]

where \(J_1 \) and \(J_2 \) are the integration of \(f(z) \) along the circle of radius \(R \) and radius \(\varepsilon \), respectively. So

\[
\pi^2 i + 2\pi = \int_0^R \frac{\sqrt{x} \log x + \sqrt{x} (\log x + 2\pi i)}{(1 + x)^2} \, dx + J_1 + J_2
\]

On \(|z| = R, |f(z)| \leq \sqrt{R}(R + 2\pi)/(R - 1)^2 \) and on \(|z| = \varepsilon, |f(z)| \leq \sqrt{\varepsilon}(\log \varepsilon + 2\pi)/(1 - \varepsilon)^2 \). So let \(R \to \infty \) and \(\varepsilon \to 0 \), we get \(|J_1| \to 0 \) and \(|J_2| \to 0 \), respectively. Hence \(\pi^2 i + 2\pi = 2 \int_0^\infty \frac{\sqrt{x} \log x}{(1 + x)^2} \, dx + 2\pi i \int_0^\infty \frac{\sqrt{x}}{(1 + x)^2} \, dx \). Equating real parts and imaginary parts, we’re done.

\(\square \)