Section 3.7

2. (4 points) Proof: Since f is analytic in G and $f \neq 0$ in G, $1/f$ is analytic in G. By Theorem 7.5, $1/|f|$ cannot have a maximum value anywhere in G unless f is a constant. So $1/|f|$ assumes its maximum value on ∂G, i.e. $|f|$ assumes its minimum value on ∂G. \hfill \square

5. (6 points) Proof: Let $g = e^h$. Then g is analytic in D and is not constant. So $|g|$ doesn’t attain maximum in D. By Problem 2, $|g|$ doesn’t attain minimum in D either. Since $|g| = e^{Reh}$, this means Reh attains neither a maximum nor a minimum in D.

Let f and g be analytic in the bounded domain D. Set $h = f - g$. Then $Reh = 0$ on ∂D. By part one, this implies $h =$constant. So $f - g = ic$, for some constant c. \hfill \square

7. (6 points) Proof: Since f is analytic for $|z| \leq R$, and $f(0) = 0$, we can write f as $f(z) = zg(z)$, where $g(z)$ is analytic for $|z| \leq R$. On the boundary $\{|z| = R\}$, $|g(z)| = |f(z)/z| \leq M/R$. By maximum principle, $|g(z)| \leq M/R$ in $\{|z| < R\}$. So $|f(z)| \leq |g(z)||z| \leq |z|M/R < 1$ in $\{|z| < R\}$, unless $g =$ constant. \hfill \square

Section 3.8

1. (7 points) Solution: This kind of problem can be solved quite easily by looking at a function’s Laurent series. Unfortunately, the most useful theorem is not in section 8, but in section 9 (Theorem 9.4, page 167). Of course, straightforward observation is also beneficial in some cases.

(1) e^z: e^z is analytic everywhere in \mathbb{C}. To judge the property of ∞, we consider all the three possibilities. First, ∞ cannot be removable by problem 3, since e^z is not a constant function. Second, ∞ is not a pole, since $|e^{in}| \leq 1$, no matter how large $n \in \mathbb{N}$ is. So ∞ is an essential singularity.

(2) $\cos z/z$: Only 0 or ∞ could have problems since $\cos z/z$ is analytic elsewhere. Note the Laurent series of $\cos z/z = \sum_{n=2k}^{\infty} \frac{(iz)^n}{2^{2k}n!}$, where $k \in \mathbb{N} \cup \{0\}$, we conclude 0 is a pole by Theorem 9.4, since $1/z$ appears in the series. To see the property of ∞, replace z with $1/\zeta$, it’s clear that $\zeta = 0$ is an essential singularity, by Theorem 9.4. Hence ∞ is an essential singularity of $\cos z/z$.

1
(3) \(e^{z-1}/(z-1) \): 1 is a pole and 0 is removable. Replace \(z \) with 1/\(\zeta \), we get \((e^{\zeta} - 1)/\zeta \). It's clear that this function is not differentiable at \(\zeta = 0 \) (argue by direct computation according to the definition of being analytic). So, \(\infty \) cannot be removable. Furthermore, if \(z \to \infty \) along the negative x-axis, then \(e^{z-1}/(z-1) \) goes to 0. So, \(\infty \) cannot be a pole. Hence, \(\infty \) has to be an essential singularity.

(4) \(z^2-1/z^2+1 \): This function is equal to \(1 - \frac{2}{z^2+1} \). So, \(i \) and \(-i \) are two poles. Replace \(z \) with 1/\(\zeta \), we get \(1 - \frac{2\zeta^2}{1+\zeta^2} \). This new function is differentiable at \(\zeta = 0 \). So, \(\infty \) is a removable singularity of the original function.

(5) \(z^3/z^4+2z^2 \): By similar argument, \(i \) and \(-i \) are two poles. 0 is a removable singularity. And \(\infty \) is also a pole, since after replacing \(z \) with 1/\(\zeta \), we get \(1 - \frac{1}{\zeta+1} \).

(6) \(e^{\cosh z} \): \(\cosh z \) is an entire function, so is \(e^z \). Since the function under consideration is the composition of two entire functions, it’s entire. To judge \(\infty \), note first by problem 3, \(\infty \) cannot be removable. Let \(z = in \) where \(n \) is just a natural number. Then we can see, as \(n \to +\infty \), hence \(z \to \infty \), \(e^{\cosh z} \) is bounded. So, \(\infty \) cannot be a pole. So, \(\infty \) has to be an essential singularity.

(7) \(z(z-\pi)^2/\sin z \): We first solve the equation \(e^{iz} = e^{-iz} \) and get solutions \(z = k\pi \) where \(k \in \mathbb{Z} \). For \(k \neq 1, 0 \), \(k\pi \) becomes a pole since \(\sin z = 0 \) here. For 0, as \(z \to 0 \), \(\sin z \to 1 \), by the definition of the derivative of \(\sin z \) at 0. So, 0 is a pole. For \(\pi \), note \(\sin(z - \pi) = -\sin z \), we again return to the previous case. But this time the dominator \(\sin(z - \pi) \) and the nominator \((z - \pi) \) have the same power. So, \(z(z-\pi)^2/\sin z \) \(\to \pi \) as \(z \to \pi \). Hence, \(\pi \) is a removable singularity. Let \(z \to \infty \) along the positive x-axis, the function has no limit. So, \(\infty \) cannot be a pole or removable. So, it’s an essential singularity.

3. (5 points) Proof: If a function is analytic in the extended plane, then in particular, it’s analytic at \(\infty \). So it must have a definite finite value at \(\infty \) and is continuous at \(\infty \). Hence, it is bounded in a neighbourhood of \(\infty \), say, \(\{ z : |z| > M \} \) for some positive number M. Meanwhile, this function is bounded in the closed disc \(\{ z : |z| \leq M \} \). So, this analytic function is bounded on the whole plane. By Liouville’s Theorem, it has to be a constant.

6. (6 points) Solution:

(i) \(e^z/z^5 = \sum_{n=-\infty}^{\infty} \frac{z^n}{(n+5)!} \). So \(a_n = \frac{1}{(n+5)!} \) and the principle part is \(\sum_{n=-5}^{-1} \frac{z^n}{(n+5)!} \).

(ii) \(\sin z/\sin^2 z = \sum_{n=-\infty}^{\infty} \frac{(-1)^{n+1} + 1}{2(n+2)!} \frac{z^{n+1}}{2(n+2)!} \). So \(b_n = \frac{(-1)^{n+1} + 1}{2(n+2)!} \frac{(-1)^{n+1}}{2} \) and the principle part is \((z - 2\pi)^{-1} \).

(iii) \(6/1-z^3 = -\sum_{n=-3}^{\infty} \frac{C_n^3(z-1)^n}{n+3} \). So \(c_n = -C_n^3 \) and principle part is \(-\sum_{n=-3}^{\infty} C_n^3(z-1)^n \).

Section 3.9
4. (4 points) Proof: Since \(f(z) \) is analytic for \(|z| \neq 0 \), we apply Theorem 9.2 to the case \(\alpha = 0 \) and get

\[
J_n(\omega) = \frac{1}{2\pi i} \int_{|z|=1} \frac{e^{\omega(z^{-1}/z)}}{z^{n+1}} dz
\]

\[
= \frac{1}{2\pi i} \int_0^{2\pi} e^{\omega(e^{i\theta}-e^{-i\theta})/2} e^{-(n+1)i\theta} i e^{i\theta} d\theta
\]

\[
= \frac{1}{2\pi} \int_0^{2\pi} e^{i\omega \sin \theta} e^{-n\theta} d\theta
\]

\[
= \frac{1}{2\pi} \left[\int_0^{2\pi} \cos(\omega \sin \theta - n\theta) d\theta + \int_0^{2\pi} i \sin(\omega \sin \theta - n\theta) d\theta \right]
\]

\[
= \frac{1}{\pi} \int_0^{\pi} \cos(\omega \sin \theta - n\theta) d\theta
\]

5. (4 points) Proof:

\[
\frac{d^m}{d\omega^m} J_n(\omega) = \begin{cases}
\frac{1}{\pi} \int_0^\pi \cos(\omega \sin \theta - n\theta) \sin^m \theta d\theta, & m = 0 \mod 4 \\
\frac{1}{\pi} \int_0^\pi -\sin(\omega \sin \theta - n\theta) \sin^m \theta d\theta, & m = 1 \mod 4 \\
\frac{1}{\pi} \int_0^\pi -\cos(\omega \sin \theta - n\theta) \sin^m \theta d\theta, & m = 2 \mod 4 \\
\frac{1}{\pi} \int_0^\pi \sin(\omega \sin \theta - n\theta) \sin^m \theta d\theta, & m = 3 \mod 4
\end{cases}
\]

So

\[
\left| \frac{d^m}{d\omega^m} J_n(\omega) \right|_{\omega=0} = \begin{cases}
\frac{1}{\pi} \int_0^\pi \cos n\theta \sin^m \theta d\theta, & m = 0 \mod 2 \\
\frac{1}{\pi} \int_0^\pi -\sin n\theta \sin^m \theta d\theta, & m = 1 \mod 2
\end{cases}
\]

By Problem 2, we see this is 0 for 0 \(\leq m < n \). So \(J_n \) has a zero of order \(n \) at \(\omega = 0 \)

Additional Problems on Chapter 3

3.3 (4 points) Proof: Assume \(\max_{|z|=1} |1/z - f(z)| < 1 \). Then

\[
\left| \int_{|z|=1} [1/z - f(z)] dz \right| \leq \int_{|z|=1} |1/z - f(z)||dz| < 2\pi
\]

By Cauchy’s Theorem, \(\int_{|z|=1} [1/z - f(z)] dz = 2\pi i \). Contradiction.

4.2 (4 points) Proof:

\[
\frac{1}{2\pi i} \int_C \frac{P'(z)}{P(z)} dz = \frac{1}{2\pi i} \int_C \sum_{k=1}^{n} \frac{P(z)}{z - z_k} dz = \sum_{k=1}^{n} \frac{1}{2\pi i} \int_C \frac{dz}{z - z_k} = \sum_{k=1}^{n} N(z_k)
\]

where \(N(z_k) \) is the winding number of \(z_k \) with respect to \(C \).