MATH 321 Manifolds and Differential Forms
(II)

Homework 4 Solution

Due September 27, 3:00 p.m.

3.8. (4 points) Proof: By definition, \(x \in M \) is critical for \(g|_M \) if and only if \(dg(x) v = 0 \) for all \(v \in T_x M \), i.e. \(dg(x) v = 0 \) if \(df(x) v = 0 \) as \(T_x M = \ker df(x) \). Note \(df(x) = (\text{grad} f_1(x), \ldots, \text{grad} f_l(x)) \), so this is equivalent to \(dg(x) \perp v \) whenever \(v \perp \text{Span}\{\text{grad} f_1(x), \ldots, \text{grad} f_l(x)\} \). Hence \(\text{grad} g(x) = dg(x) \in \text{Span}\{\text{grad} f_1(x), \ldots, \text{grad} f_l(x)\} \). \(\Box \)

3.10. (6 points) (i) Solution:

\[
g(x) = x \cdot Ax = \sum_{i=1}^{n} x_i (Ax)_i = \sum_{i=1}^{n} x_i \sum_{j=1}^{n} a_{ij} x_j
\]

where \(A = (a_{ij}) \). So

\[
\frac{\partial}{\partial x_k} g(x) = \sum_{j=1}^{n} a_{kj} x_j + \sum_{i=1}^{n} a_{ik} x_i = 2 \sum_{i=1}^{n} a_{ii} x_i
\]

as \(A = A^T \). Since \(\frac{\partial}{\partial x_k} g(x) = 2 (Ax)_k \), we get \(\text{grad} g(x) = 2Ax \). \(\Box \)

(ii) Proof: By definition, \(x \in M \) is a critical point of \(g|_M \) if and only if \(dg(x) v = 0 \) for all \(v \in T_x M \), i.e. \(dg(x) \perp T_x M \). Since \(M \) is a sphere, \(T_x M \perp = \text{Span}\{x\} \). Hence \(x \in M \) is a critical point of \(g|_M \) if and only if \(dg(x) = \lambda x \) for some \(\lambda \in \mathbb{R} \). By (i), \(dg(x) = 2Ax \). So \(Ax = \lambda x/2 \). This shows \(x \) is an eigenvector for \(A \). Obviously \(||x|| = 1 \). \(\Box \)

(iii) Proof:

\[
g(x)x = (x \cdot Ax)x = x(Ax)^T x = xx^T A^T x = Ax
\]

by \(A = A^T \) and \(||x|| = 1 \). So \(g(x) \) is the corresponding eigenvalue of \(x \). \(\Box \)

3.12. (5 points) Proof: \((t - a \sin t)' = 1 - a \cos t \). Since \(a \in (0, 1) \), \(1 - a \cos t > 0 \). So \(t - a \sin t \) is increasing. This implies \(f \) is i-1.

\(df(t) = (1 - a \cos t, a \sin t) \). So \(df(t) \) has rank 0 if and only if \(a \cos t = 1 \) and \(\sin t = 0 \). This is impossible since \(|a \cos t| \leq a < 1 \).

To see \(f^{-1} \) is continuous, it’s beneficial to look at the graph of \(f \). Then we can see from the graph that \(f^{-1} \) is continuous. (The graph is on the next page.) \(\Box \)
Figure 1: Graph of the curve \(f(t) = (t - a \sin t, 1 - a \cos t) \)

4.1. (5 points)

(i) Solution: \(d(e^{xy} \, dx) = -xye^{xy} \, dx \, dy - xy e^{xy} \, dx \, dz. \)

(ii) Solution:

\[
\begin{align*}
d(\sum_{i=1}^{n} x_i^2 \, dx_1 \ldots \hat{x_i} \ldots \, dx_n) &= \sum_{i=1}^{n} 2x_i \, dx_1 \, dx_1 \ldots \hat{x_i} \ldots dx_n \\
&= \sum_{i=1}^{n} (-1)^{i-1} 2x_i \, dx_1 \, dx_2 \ldots \, dx_n
\end{align*}
\]

(iii) Solution:

\[
\begin{align*}
d(||x||^p \sum_{i=1}^{n} (-1)^{i+1} x_i \, dx_1 \ldots \hat{x_i} \ldots \, dx_n) \\
&= \sum_{i=1}^{n} (-1)^{i+1} d(||x||^p) \, dx_1 \ldots \hat{x_i} \ldots dx_n \\
&= \sum_{i=1}^{n} (-1)^{i+1} (||x||^p + \frac{p}{2} x_i ||x||^{p-2} x_i) \, dx_1 \ldots \hat{x_i} \ldots dx_n \\
&= \sum_{i=1}^{n} (||x||^p + px_i^2 ||x||^{p-2}) \, dx_1 \ldots dx_i \ldots dx_n \\
&= (n + p) ||x||^p \, dx_1 \ldots dx_i \ldots dx_n
\end{align*}
\]

So this form is closed if and only if \(p = -n. \)