1. Give an ordinary generating function for the sequence \(a_n \) defined by \(a_0 = 1, a_1 = 3, \) and \(a_n = a_{n-1} + 2a_{n-2} \) for all \(n \geq 2. \)

We compute

\[
f(x) &= \sum_{n=0}^{\infty} a_n x^n \\
&= 1 + 3x + \sum_{n=2}^{\infty} a_n x^n \\
&= 1 + 3x + \sum_{n=2}^{\infty} (a_{n-1} + 2a_{n-2}) x^n \\
&= 1 + 3x + \sum_{n=2}^{\infty} a_{n-1} x^n + \sum_{n=2}^{\infty} 2a_{n-2} x^n \\
&= 1 + 3x + x \sum_{n=1}^{\infty} a_n x^n + 2x^2 \sum_{n=0}^{\infty} a_n x^n \\
&= 1 + 2x + x \sum_{n=0}^{\infty} a_n x^n + 2x^2 \sum_{n=0}^{\infty} a_n x^n \\
&= 1 + 2x + xf(x) + 2x^2 f(x) \\
(1 - x - 2x^2) f(x) &= 1 + 2x \\
f(x) &= \frac{1 + 2x}{1 - x - 2x^2}
\]
2. For any positive integer \(n \), show that there is some value of \(c \) (which can depend on \(n \)) such that for all \(k \geq c \), \(p_k(n + k) = p_c(n + c) \). Also find the minimum such value of \(c \).

\(p_k(n + k) \) is the number of ways to put \(n + k \) indistinguishable balls into \(k \) indistinguishable boxes such that no box is empty. If we remove one ball from each box, it is the number of ways to put \(n \) balls into \(k \) boxes, with some boxes allowed to be empty. If \(k > n \), we must leave at least \(k - n \) boxes empty, and because the boxes are indistinguishable, removing these boxes that must be empty does not change the number of arrangements. Therefore, for all \(k \geq n \), \(p_k(n + k) = p_n(2n) \). Furthermore, \(n \) is the minimum possible such value of \(c \), as if if \(c < n \), then \(p_c(n + c) \) does not count the possibility of each extra ball having its own box, so we lose at least one of the arrangements that would be counted in \(p_n(2n) \).
3. How many positive integers are there that are factors of at least one of $2^3 \cdot 3^5 \cdot 7$, $3^5 \cdot 5^9$, and $2^8 \cdot 5^5$?

We use inclusion-exclusion. Any factor of $2^3 \cdot 3^5 \cdot 7$ must be of the form $2^m \cdot 3^n$ for $m \leq 4$ and $n \leq 7$. There are 5 possible choices for m and 8 possible choices for n, so there are 40 factors of $2^3 \cdot 3^5 \cdot 7$. Similarly, there are 60 factors of $3^5 \cdot 5^9$ and 54 factors of $2^8 \cdot 5^5$.

Any number that is a factor of both $2^3 \cdot 3^5 \cdot 7$ and $3^5 \cdot 5^9$ must be a factor of their greatest common divisor, which is 3^5. There are 6 such numbers. Similarly, there are 6 numbers that divide both $3^5 \cdot 5^9$ and $2^8 \cdot 5^5$, and five that divide both $2^3 \cdot 7$ and $2^8 \cdot 5$. Finally, 1 is the unique common divisor of all three numbers. Therefore, by inclusion-exclusion, the number of factors of at least one such number is

$$40 + 60 + 54 - 6 - 6 - 5 + 1 = 138.$$
4. Give a formula for the Stirling number of the second kind $S(n, 2)$.

The Stirling numbers of the second kind are the ways to put distinguishable balls into indistinguishable boxes with no box empty. There are 2^n possible ways to place the n balls into two distinguishable boxes. Two of these put all of the balls into the same box, so there are $2^n - 2$ arrangements for distinguishable boxes. Divide by $2!$ ways to rearrange the boxes to get $2^{n-1} - 1$ ways to place the balls into indistinguishable boxes.
5. Give an exponential generating function for the sequence \(a_n \) defined by \(a_0 = a_1 = 1 \) and \(a_{n+1} = a_n + n(n-1)a_{n-1} \) for all \(n \geq 1 \).

We compute

\[
\begin{align*}
 f(x) &= \sum_{n=0}^{\infty} \frac{a_n x^n}{n!} \\
 f'(x) &= \sum_{n=1}^{\infty} \frac{a_n x^{n-1}}{(n-1)!} \\
 &= \sum_{n=0}^{\infty} \frac{a_{n+1} x^n}{n!} \\
 &= \sum_{n=0}^{\infty} (a_n + n(n-1)a_{n-1}) \frac{x^n}{n!} \\
 &= \sum_{n=0}^{\infty} a_n \frac{x^n}{n!} + \sum_{n=0}^{\infty} (n-1)a_{n-1} \frac{x^n}{n!} \\
 &= f(x) + \sum_{n=2}^{\infty} \frac{a_{n-1} x^n}{(n-2)!} \\
 &= f(x) + x^2 \sum_{n=0}^{\infty} \frac{a_{n+1} x^n}{n!} \\
 &= f(x) + x^2 f'(x).
\end{align*}
\]

This gives us \((1-x^2)f'(x) = f(x)\), or equivalently, \(f'(x) = \frac{1}{1-x^2} f(x) \). If \(f(x) = e^{g(x)} \), then \(f'(x) = g'(x) e^{g(x)} = g'(x) f(x) \), so we have \(g'(x) = \frac{1}{1-x^2} \).

Then

\[
\begin{align*}
 g(x) &= \int g'(x) \, dx \\
 &= \int \frac{1}{1-x^2} \, dx \\
 &= \int \frac{1}{2} \left(\frac{1}{1+x} + \frac{1}{1-x} \right) \, dx \\
 &= \frac{1}{2} \left(\ln(1+x) - \ln(1-x) \right) + C \\
 &= \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) + C \\
 &= \ln \left(\sqrt{\frac{1+x}{1-x}} \right) + C.
\end{align*}
\]

From this, \(f(x) = e^{g(x)} = \sqrt{\frac{1+x}{1-x}} e^C \). If \(x = 0 \), then \(f(0) = a_0 = 1 \). The function gives \(f(0) = \sqrt{\frac{1+0}{1-0}} e^C = e^C \), so \(e^C = 1 \). Therefore, \(f(x) = \sqrt{\frac{1+x}{1-x}} \).
6. Let \(P \) be the set of partitions of 150 such that for all \(k \geq 1 \), if there is a part of size \(k+1 \), then there is at least one part of size \(k \). Show that the number of partitions in \(P \) for which the largest part is even is equal to the number of partitions in \(P \) for which the largest part is odd.

Let \(P^* \) be the set of conjugates of partitions in \(P \). If a partition is in \(P \), then if there is a \((k+1)\)-th column of the Ferrers diagram, then the \(k \)-th column is longer, because there is a part of size \(k \). Therefore, no two columns have the same length. Columns of a partition are rows of the Ferrers diagram in its conjugate partition, so for every partition in \(P^* \), no two rows are the same length. This means that all partitions in \(P^* \) have no two parts of the same size. These steps work in reverse also, so \(P^* \) is the set of partitions of 150 with no two parts equal.

The size of the largest part of a partition is the number of parts of its conjugate partition. Therefore, the problem asks us to show that the number of partitions in \(P^* \) with an odd number of parts is equal to that for an even number of parts. If 150 is not a pentagonal number, then this was a theorem in class, and is essentially Theorem 15.5 in the book. We can check \(\omega(10) = 145 \), \(\omega(11) = 176 \), \(\omega(-10) = 155 \), and \(\omega(-9) = 126 \), so if \(\omega(m) = 150 \), then \(10 < m < 11 \) if \(m > 0 \) and \(-10 < m < -9 \) if \(m < 0 \), both of which are obviously impossible.