1. The relationship is given by \(V_0 = iR \) and \(V_1 - V_0 = L \frac{di}{dt} \). Differentiating the first equation and substitute into the second, we get
\[
V_1 - V_0 = \frac{L}{R} \frac{dV_0}{dt}
\]
If \(V_1 \) is set to be 0, we get
\[
-V_0 = \frac{L}{R} \frac{dV_0}{dt}
\]
\[
d\frac{dV_0}{dt} = -\frac{R}{L} V_0
\]
\[
V_0 = Ce^{-\frac{R}{L} t}
\]
(By the polynomial method)

Plugging in \(t = 0 \) and \(V_0 = v_0 \), we see \(C = v_0 \). Therefore, \(V_0 = v_0 e^{-\frac{R}{L} t} \).

2. Square the inequalities, what we need to prove becomes
\[
\sum_{i=1}^{n} x_i^2 \leq \left(\sum_{i=1}^{n} |x_i| \right)^2 \leq n \sum_{i=1}^{n} x_i^2
\]
Expanding the middle expression, it becomes
\[
\sum_{i=1}^{n} x_i^2 \leq \sum_{i=1}^{n} |x_i|^2 + \sum_{i \neq j} |x_i||x_j| \leq n \sum_{i=1}^{n} x_i^2
\]
Since \(\sum_{i \neq j} |x_i||x_j| \geq 0 \), the left inequality is clear. Thus, it remains to prove
\[
\sum_{i=1}^{n} |x_i|^2 + \sum_{i \neq j} |x_i||x_j| \leq n \sum_{i=1}^{n} x_i^2
\]
which is equivalent to
\[
\sum_{i \neq j} |x_i||x_j| \leq (n - 1) \sum_{i=1}^{n} x_i^2
\]
To prove this, we proceed as follow:
\[
\sum_{i \neq j} |x_i||x_j| \leq \frac{1}{2} \left(\sum_{i \neq j} x_i^2 + x_j^2 \right) = \frac{1}{2} \left(\sum_{i \neq j} x_i^2 + \sum_{i \neq j} x_j^2 \right)
\]
\[
= \frac{1}{2} \left((n - 1)(\sum_{i} x_i^2) + (n - 1)(\sum_{j} x_j^2) \right) = (n - 1) \sum_{i=1}^{n} x_i^2
\]
3. \[|AB| = \sum_{i,j} |(AB)_{ij}| \]
 \[= \sum_{i,j} | \sum_k A_{ik} B_{kj} | \]
 \[= \sum_{i,j,k} |A_{ik} B_{kj}| \]
 \[\leq \sum_{i,j,k,l} |A_{ik} B_{lj}| \]
 \[= (\sum_{i,k} |A_{ik}|)(\sum_{l,j} |B_{lj}|) \]
 \[= |A||B| \] (This involves the expression above and some extra terms!)

4. There is a \(n \times m \) matrix \(A \) such that \(Tx = Ax \) for all \(x \in \mathbb{R}^m \). Let \(M = \max_{i,j} |A_{ij}| \). For all \(x \in \mathbb{R}^m \),

\[|Tx| = \sum_i |(Tx)_i| \]
\[= \sum_i | \sum_j A_{ij} x_j | \]
\[\leq \sum_i \sum_j |A_{ij}| |x_j| \]
\[\leq \sum_i \sum_j M |x_j| \]
\[= nM \sum_j |x_j| \]
\[= nM |x| \]

Challenge problems:

1. Every linear transformation \(T \) is given by matrix multiplication. Therefore, each coordinate of \(Tx \) is a polynomial (more precisely, linear combination) of the \(x_i \)'s. Therefore, every coordinate of \(Tx \) is a continuous function of \(x \) and hence \(Tx \) is a continuous function of \(x \).

2. For each fixed pair of \(i,j \), we have \(|a_{ij}^{(k)}| \leq |A^{(k)}| \). Therefore,

\[\sum_{k=0}^{\infty} |a_{ij}^{(k)}| \leq \sum_{k=0}^{\infty} |A^{(k)}| < \infty \]
This means \(\sum_{k=0}^{\infty} a_{ij}^{(k)} \) converges absolutely.

For the second part, let \(A^{(n)} = \frac{A^n}{n!} \). Then

\[
|A^{(n)}| = \frac{|A^n|}{n!} \leq \frac{|A|^n}{n!} \quad \text{(by problem 3)}
\]

It is well known that \(\sum_{n=0}^{\infty} \frac{r^n}{n!} < \infty \) for every real number \(r \). Therefore, we see, for all \(A \),

\[
\sum_{n=0}^{\infty} |A^{(n)}| < \infty
\]

By the first part of this problem, we see that \(\sum_{n=0}^{\infty} \frac{A^n}{n!} = \sum_{n=0}^{\infty} A^{(n)} \) converges.

3. From the previous HW we have

\[
v(t) = \frac{gm}{\alpha} - \frac{gm}{\alpha} e^{-\frac{\alpha}{m}t} = \frac{gm}{\alpha} (1 - e^{-\frac{\alpha}{m}t}).
\]

\[
v(t) = \frac{gm}{\alpha} - \frac{gm}{\alpha} e^{-\frac{\alpha}{m}t} \\
= \frac{gm}{\alpha} (1 - e^{-\frac{\alpha}{m}t}) \\
= \frac{gm}{\alpha} \left(1 - \left(1 + \left(-\frac{\alpha}{m}t\right) + \frac{1}{2!}\left(-\frac{\alpha}{m}t\right)^2 + \frac{1}{3!}\left(-\frac{\alpha}{m}t\right)^3 + \cdots \right) \right) \\
= \frac{gm}{\alpha} \left(\frac{\alpha}{m} t - \frac{1}{2!}\left(-\frac{\alpha}{m}t\right)^2 - \frac{1}{3!}\left(-\frac{\alpha}{m}t\right)^3 - \cdots \right) \\
= gt - \frac{1}{2!}g\left(-\frac{\alpha}{m}\right)t^2 - \frac{1}{3!}g\left(-\frac{\alpha}{m}\right)^2t^3 - \cdots \\
\to gt \text{ as } \alpha \to 0
\]

This limit is the same as the velocity if there is no air resistance.

(Remark: Another way to calculate the limit is to use the L’Hospital’s Rule.)