Solution to Assignment 1, MATH3230

1. For \(y = Ce^{\alpha x} \), \(y^{(i)} = C\alpha^i e^{\alpha x} \).
 Therefore, \(\sum_{i=0}^{n} a_i y^{(i)} = C \left(\sum_{i=0}^{n} a_i \alpha^i \right) e^{\alpha x} = 0 \).

2. The system is given by \(\frac{dY}{dt} = \alpha YM \) and \(\frac{dM}{dt} = \beta Y \).
 In reality, \(M, Y, \alpha \) are positive and \(\beta \) is negative.

3. The equation is given by \(\frac{dv}{dt} = g - \frac{\alpha v}{m} \).
 \[
 \int \frac{dv}{mg - \alpha v} = \frac{1}{m} \int dt \quad \text{assuming } mg - \alpha v \neq 0
 \]
 \[
 \frac{-1}{\alpha} \log |mg - \alpha v| = \frac{t}{m} + C
 \]
 \[
 mg - \alpha v = e^{\frac{\alpha t}{m} + C}
 \]
 \[
 v = mg - \frac{\alpha}{m} \left(e^C \right) e^{\frac{-\alpha t}{m}}
 \]
 \[
 \therefore \quad v = \frac{gm}{\alpha} + Be^{-\frac{\alpha t}{m}}
 \]
 where \(B \) is any nonzero constant. Note that we have assumed \(mg - \alpha v \neq 0 \).
 We can also observe that \(v \equiv \frac{mg}{\alpha} \) is also a solution. Therefore, by the uniqueness of solution, if \(mg - \alpha v = 0 \) at some point of a solution, that solution will be \(v \equiv \frac{mg}{\alpha} \).
 To conclude, \(v = \frac{2m}{\alpha} + Be^{-\frac{\alpha t}{m}} \), where \(B \) is any real constant.

4. Let \(v = \) velocity of the mass = \(L \frac{d\theta}{dt} \).
 So we have \(m \frac{dv}{dt} = -mg \sin \theta - \alpha v \).
 If we approximate \(\sin \theta \) by \(\theta \) when \(|\theta| \) is small, we have
 \[
 mL \frac{d^2\theta}{dt^2} = -mg \theta - \alpha L \frac{d\theta}{dt}
 \]
 \[
 \therefore \quad \frac{d^2\theta}{dt^2} + \frac{\alpha}{m} \frac{d\theta}{dt} + \frac{g}{L} \theta = 0
 \]
 We obtain a second order ODE with constant coefficients, with \(x^2 + \frac{\alpha}{m} x + \frac{g}{L} = 0 \) as characteristic equation. Therefore, there are 3 cases:

 • \(\left(\frac{\alpha}{m} \right)^2 - 4 \frac{g}{L} > 0 \):
In this case we have \(\theta = A \exp\left(\frac{-(\pm) + \sqrt{(\pm)^2 - 4gL}}{2} t\right) + B \exp\left(\frac{-(\pm) - \sqrt{(\pm)^2 - 4gL}}{2} t\right) \)
as general solutions for the differential equation, where \(A \) and \(B \) are arbitrary constants.

• \((\frac{\alpha}{m})^2 - 4gL = 0: \)
 This means \(\frac{\alpha}{m} = 2 \frac{\sqrt{g}}{L} \) and the root to the characteristic equation is
 \(-\frac{\sqrt{g}}{L} \). We have \(\theta = A \exp\left(-\frac{\sqrt{g}}{L} t\right) + B t \exp\left(-\frac{\sqrt{g}}{L} t\right) \), where \(A \) and \(B \) are arbitrary constants.

• \((\frac{\alpha}{m})^2 - 4gL < 0: \)
 In this case we have \(\theta = A \exp\left(-\frac{\alpha}{2m} t\right) \sin\left(\frac{\sqrt{4gL - (\pm)^2}}{2} t\right) + B \exp\left(-\frac{\alpha}{2m} t\right) \cos\left(\frac{\sqrt{4gL - (\pm)^2}}{2} t\right) \)
as general solutions for the differential equation, where \(A \) and \(B \) are arbitrary constants.