of n sides. This polygon is inscribed in the unit circle centered at the origin, and it has one vertex at the point corresponding to the root $z = 1$ $(k = 0)$. If we write

$$\omega_n = \exp \left(\frac{2\pi i}{n} \right),$$

then by property (2), the nth roots of unity are simply

$$1, \omega_n, \omega_n^2, \ldots, \omega_n^{n-1}.$$ Note that $\omega_n^0 = 1$. See Fig. 9 for the interpretation of the three cube roots of unity as the vertices of an equilateral triangle. Figure 10 illustrates the case $n = 6$.

The above method can be used to find the nth roots of any nonzero complex number $z_0 = r_0 \exp(i\theta_0)$. Those roots, which are obtained by solving the equation

$$z^n = z_0$$

for z, are the numbers

$$c_k = \sqrt[n]{r_0} \exp \left[i \left(\frac{\theta_0 + 2k\pi}{n} \right) \right] \quad (k = 0, 1, \ldots, n-1),$$

where $\sqrt[n]{r_0}$ denotes the positive nth root of r_0. The number $\sqrt[n]{r_0}$ is the length of each of the radius vectors representing the n roots. An argument of the first root c_0 is θ_0/n, and arguments of the other roots are obtained by adding integral multiples of $2\pi/n$. Consequently, as was the case with the nth roots of unity, the roots when $n = 2$ always lie at the opposite ends of a diameter of a circle, one root being the negative of the other; and when $n = 3$, they lie at the vertices of a regular polygon of n sides.

If c is any particular nth root of z_0, the set of all nth roots can be written

$$c, c\omega_n, c\omega_n^2, \ldots, c\omega_n^{n-1},$$

where $\omega_n = \exp(2\pi i/n)$, as defined in equation (6). This is because multiplication of any nonzero complex number by ω_n corresponds to increasing the argument of that number by $2\pi/n$.

We shall let $z_0^{1/n}$ denote the set of nth roots of a nonzero complex number z_0. If, in particular, z_0 is a positive real number r_0, the symbol $r_0^{1/n}$ denotes a set of roots and the symbol $\sqrt[n]{r_0}$ in expression (8) is reserved for the one positive root. When the value of θ_0 that is used in expression (8) is the principal value of $\arg z_0$ ($-\pi < \theta_0 < \pi$), the number c_0 is often referred to as the principal nth root of z_0. Thus when z_0 is a positive real number r_0, its principal root is $\sqrt[n]{r_0}$.

Note that if $z_0 = 0$, equation (7) has only the solution $z = 0$. Hence the only root at origin is zero.

Finally, a convenient way to remember expression (8) is to write z_0 in its most general exponential form (see Sec. 6),

$$z_0 = r_0 \exp[i(\theta_0 + 2k\pi)] \quad (k = 0, \pm 1, \pm 2, \ldots)$$

and to formally apply laws of fractional exponents for real numbers, keeping in mind that there are precisely n distinct roots:

$$z_0^{1/n} = \sqrt[n]{r_0} \exp \frac{i(\theta_0 + 2k\pi)}{n} \quad (k = 0, 1, 2, \ldots, n - 1)$$

This formula is, of course, valid when $n = 1$ as well as when $n = 2, 3, \ldots$. The case $n = 1$ was excluded from our discussion only because of its trivial nature.

Example 2. To illustrate formula (10), let us find all values of $(-8i)^{1/3}$, or the three cube roots of $-8i$. We need only write

$$-8i = 8 \exp \left[i \left(-\frac{\pi}{2} + 2k\pi \right) \right] \quad (k = 0, \pm 1, \pm 2, \ldots),$$

to see that the desired roots are

$$c_k = 2 \exp \left[i \left(-\frac{\pi}{6} + \frac{2k\pi}{3} \right) \right] \quad (k = 0, 1, 2).$$

In cartesian coordinates, then,

$$c_0 = 2 \exp \left[i \left(-\frac{\pi}{6} \right) \right] = 2 \left(\cos \frac{\pi}{6} - i \sin \frac{\pi}{6} \right) = \sqrt{3} - i;$$

and, in like manner, we find that $c_1 = 2i$ and $c_2 = -\sqrt{3} - i$. These roots lie at the vertices of an equilateral triangle that is inscribed in a circle of radius 2 centered at the origin. The principal root is $c_0 = \sqrt{3} - i$.

EXERCISES

1. Find one value of $\arg z$ when

$$z = \frac{-2}{1 + \sqrt{3}i}; \quad \frac{i}{2 - 2i}; \quad (\sqrt{3} - i)^6.$$

Ans. (a) $2\pi/3$; (c) π.

2. By writing the individual factors on the left in exponential form, performing the needed operations, and finally changing back to cartesian coordinates, show that

$$i(1 - \sqrt{3}i)(\sqrt{3} + i) = 2(1 + \sqrt{3}i); \quad 5i/(2 + i) = 1 + 2i;$$

$$(-1 + i)^7 = -8(1 + i); \quad (1 + \sqrt{3}i)^{-10} = 2^{-11}(-1 + \sqrt{3}i).$$