Math 2240 Problem Set 1

Due: January 29th, 2013 in class

When you hand in this problem set, please indicate on the top of the front page how much time it took you to complete.

Reading: 4.1–4.3

Problems from the book:
4.1.2, 4.1.6, 4.1.12, 4.1.14, 4.1.17, 4.1.18, 4.1.20.
4.2.1, 4.2.2, 4.2.6, 4.2.7.

Additional problems:

1. Suppose that a meter stick is broken at two randomly chosen points. What is the probability that the three segments form the sides of a triangle?

2. Let \(f(x) : [0, 1] \to \mathbb{R} \) be a function. The total variation of function \(f \) is the quantity

\[
V(f) = \sup_P \sum_{i=0}^{n-1} |f(x_{i+1}) - f(x_i)|.
\]

where the supremum is taken over the set all partitions

\[P = \{0 = x_0 < x_1 < \cdots < x_{n_P} = 1\} \]

of the interval \([0, 1]\).

The function \(f \) has bounded variation if \(V(f) < \infty \).

(a) Show that every monotone function has bounded variation.

(b) Prove that if \(f \) has bounded variation then \(f \) is integrable.

(c) Construct an example of integrable function which does not have bounded variation.