1) (20 points) Let

\[A = \begin{pmatrix} 1 & -2 & 1 & 2 \\ 1 & 1 & -1 & 1 \\ 1 & 7 & -5 & -1 \end{pmatrix}, \quad \vec{b}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \vec{b}_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}. \]

Find all solutions to the systems of equations a) \(A\vec{x} = 0 \), b) \(A\vec{x} = \vec{b}_1 \), c) \(A\vec{x} = \vec{b}_2 \), where \(\vec{x} \) is in \(\mathbb{R}^4 \). Also: d) find numbers \(c_1, c_2, c_3 \) such that the system \(A\vec{x} = \vec{b} \) has a solution if and only if \(b_1, b_2, b_3 \) satisfy the equation \(c_1b_1 + c_2b_2 + c_3b_3 = 0 \).

2) (15 points) Let

\[A = \begin{pmatrix} 2 & 1 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}. \]

Either find \(A^{-1} \) or show that it doesn't exist.

3) (15 points) Let

\[A = \begin{pmatrix} 1 & -2 & 2 \\ -2 & 4 & -2 \end{pmatrix} \]

a) Find a matrix \(B \) such that \(AB = I \), where \(I \) is the \(2 \times 2 \) identity matrix.

b) Is the matrix \(A \) invertible?

OVER
4) (10 points) For each of the following statements say if it is true or false; give reasons if it is true, a counterexample if it is false.

a) If three vectors \(\vec{v}_1, \vec{v}_2, \vec{v}_3 \) in \(\mathbb{R}^4 \) are linearly independent, then any two of them are also linearly independent.

b) If four vectors \(\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4 \) span \(\mathbb{R}^3 \), then any three of them also span \(\mathbb{R}^3 \).

5) (10 points) Say, giving reasons, if the following statement is true always, sometimes (but not always), or never. If it is sometimes true, say for what vectors \(\vec{b} \) it is true, and why.

"If \(A \) is an \(m \times n \) matrix, and \(\vec{b} \) is in \(\mathbb{R}^m \) then the sum of two solutions of the system \(A\vec{x} = \vec{b} \), where \(\vec{x} \) is in \(\mathbb{R}^n \), is also a solution."

6) (20 points) Let \(R: \mathbb{R}^2 \to \mathbb{R}^2 \) be the linear transformation which rotates each vector \(\vec{v} \) in \(\mathbb{R}^2 \) counterclockwise by the angle 45°. Let \(S: \mathbb{R}^2 \to \mathbb{R}^2 \) be the linear transformation which reflects each vector \(\vec{v} \) in \(\mathbb{R}^2 \) in the \(x_1 \)-axis i.e. \(S \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) = \left(\begin{array}{c} x_1 \\ -x_2 \end{array} \right) \). Let \(T: \mathbb{R}^2 \to \mathbb{R}^2 \) be the composition of \(R \) and \(S \) i.e. \(T(\vec{v}) = S(R(\vec{v})) \) for all \(\vec{v} \) in \(\mathbb{R}^2 \). Find the standard matrices \(A, B, C \) of the linear transformations \(R, S, T \). How can \(C \) be obtained from \(A \) and \(B \)? Verify this relationship directly for the three matrices you found.

Note: \(\cos 45° = 1/\sqrt{2} = \sin 45° \).

7) (10 points) Write down two \(2 \times 2 \) matrices \(A \) and \(B \), neither of which is the 0-matrix, satisfying (simultaneously) the two conditions \(A + B = 0 \) and \(AB = 0 \).