(1) Find the absolute maxima and minima of \(f(x, y) = x^2 + 2y^2 - x \) over the region \(x^2 + y^2 \leq 1 \). Use Lagrange multipliers on the boundary. Hint: you should have 5 potential candidate points.

We first look for critical points inside the region. \(\nabla f = (2x - 1, 4y) \). This is \(\vec{0} \) when \((x, y) = (\frac{1}{2}, 0) \).

Next, we look at the boundary. Using Lagrange Multipliers, we’re looking for when \(\nabla f = \lambda \nabla g \) where \(g(x, y) = x^2 + y^2 \). \(\nabla g = (2x, 2y) \), so we’re trying to solve the system of equations:

\[
2x - 1 = \lambda 2x \\
4y = \lambda 2y \\
x^2 + y^2 = 1
\]

From the second equality, either \(\lambda = 2 \) or \(y = 0 \). If \(y = 0 \), then \(x = \pm 1 \), giving us the points \((1, 0) \) and \((-1, 0) \).

If \(\lambda = 2 \), then \(2x - 1 = 4x \) so \(x = -\frac{1}{2} \), and thus \(y = \pm \frac{\sqrt{3}}{2} \), giving us the points \((-\frac{1}{2}, \frac{\sqrt{3}}{2}) \) and \((-\frac{1}{2}, -\frac{\sqrt{3}}{2}) \).

A table of points of interest and the value of \(f \) at those points is given below:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(f(x, y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{2})</td>
<td>0</td>
<td>(-\frac{1}{4})</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>-(\frac{1}{2})</td>
<td>(\frac{\sqrt{3}}{2})</td>
<td>9/4</td>
</tr>
<tr>
<td>-(\frac{1}{2})</td>
<td>-(\frac{\sqrt{3}}{2})</td>
<td>9/4</td>
</tr>
</tbody>
</table>

So the absolute maximum is \(\frac{9}{4} \), attained at \((-\frac{1}{2}, \pm \frac{\sqrt{3}}{2}) \) and the absolute minimum is \(-\frac{1}{4} \) at \((-\frac{1}{2}, 0) \).

(2) For what values of \(k \) is \((0, 0) \) a local minimum of \(f(x, y) = x^2 + kxy + y^2 \)? For what values is it a local maximum? For what values is it a saddle point?

\(\nabla f = (2x + ky, 2y + kx) \) which is \(\vec{0} \) at \((0, 0) \) so \((0, 0) \) is always one of a local maximum, a local minimum, or a saddle point. \(f_{xx} = 2, f_{xy} = k \) and \(f_{yy} = 2 \), so \(D = 4 - k^2 \).

This is negative for \(-2 < k < 2 \), so, since \(f_{xx}(0, 0) > 0 \), \((0, 0) \) is a local minimum. If \(k > 2 \) or \(k < -2 \), then \(D > 0 \), so it is a saddle point.

If \(k = 2 \), then \(f(x, y) = x^2 + 2xy + y^2 = (x + y)^2 \), which is always \(\geq 0 \). Since \(f(0, 0) = 0 \), it is a local minimum.

Similarly, if \(k = -2 \), then \(f(x, y) = x^2 - 2xy + y^2 = (x - y)^2 \), which is always \(\geq 0 \). So similarly, \((0, 0) \) is a local minimum.

Summarizing, \((0, 0) \) is a local minimum for \(-2 \leq k \leq 2 \) and a saddle point for \(k < -2 \) and \(k > 2 \).
(3) Find the critical points of \(f(x, y) = x^3 - y^3 - 3xy \), and classify them as local maxima, local minima, or saddle points.

\[
\begin{align*}
 f_x &= 3x^2 - 3y \\
 f_y &= -3y^2 - 3x
\end{align*}
\]

These are 0 when \(y = x^2 \) and \(y^2 = -x \), or \(x^4 = -x \). This happens when \(x^3 = -1 \) (which happens when \(x = -1 \)) or when \(x = 0 \). So our critical points are \((-1, 1)\) and \((0, 0)\).

\[
\begin{align*}
 f_{xx} &= 6x \\
 f_{yy} &= -6y \\
 f_{xy} &= -3
\end{align*}
\]

At \((-1, 1)\) these are \(-6, -6\) and \(-3\) respectively, for a discriminant \(D = (-6)(-6) - (-3)^2 = 27 \). This is larger than 0, so \((-1, 1)\) is either a local max or local min. Since \(f_{xx}(-1, 1) = -6 < 0 \), the point is a local maximum.

At \((0, 0)\) these are 0, 0 and \(-3\) respectively, for a discriminant \(D = 0 \ast 0 - (-3)^2 = -9 \). This is smaller than 0, so \((0, 0)\) is a saddle point.

(4) Use Lagrange multipliers to find the minimum value of \(x^2 + y^2 + z^2 + w^2 \) given the constraint \(ax + by + cz + dw = 1 \) for some constants \(a, b, c \) and \(d \).

The equation \(\nabla f = \lambda \nabla g \) expands out to:

\[
\begin{align*}
 2x &= \lambda a \\
 2y &= \lambda b \\
 2z &= \lambda c \\
 2w &= \lambda d
\end{align*}
\]

Plugging back into the constraint, we get that:

\[
\frac{\lambda}{2}a^2 + \frac{\lambda}{2}b^2 + \frac{\lambda}{2}c^2 + \frac{\lambda}{2}d^2 = 1
\]

Solving for \(\lambda \), we get \(\lambda = \frac{2}{a^2 + b^2 + c^2 + d^2} \), so:

\[
\begin{align*}
 x &= \frac{a}{a^2 + b^2 + c^2 + d^2} \\
 y &= \frac{b}{a^2 + b^2 + c^2 + d^2} \\
 z &= \frac{c}{a^2 + b^2 + c^2 + d^2} \\
 w &= \frac{d}{a^2 + b^2 + c^2 + d^2}
\end{align*}
\]
Plugging back into our original function, we get:

$$\frac{a^2}{(a^2 + b^2 + c^2 + d^2)^2} + \frac{b^2}{(a^2 + b^2 + c^2 + d^2)^2} + \frac{c^2}{(a^2 + b^2 + c^2 + d^2)^2} + \frac{d^2}{(a^2 + b^2 + c^2 + d^2)^2} = \frac{1}{a^2 + b^2 + c^2 + d^2}.$$

(5) Find the minimum of \(f(x, y) = -2x + 5x^2 - 4xy + y^2 \) by first fixing \(x \) and solving for the \(y \) which, for that fixed \(x \), minimizes \(f(x, y) \). Call this \(y(x) \). Then find the minimum value of \(f(x, y(x)) \).

First, fix \(x \) and look at the derivative with respect to \(y \):

\[
f_y(x, y) = -4x + 2y.
\]

This is negative when \(y < 2x \), zero when \(y = 2x \) and positive when \(y > 2x \), so \(y = 2x \) is a global minimum. Plugging back in:

\[
f(x, 2x) = -2x + 5x^2 - 8x^2 + 4x^2 = -2x + x^2
\]

Taking the derivative with respect to \(x \):

\[
\frac{d}{dx}f(x, 2x) = -2 + 2x
\]

This is negative when \(x < 1 \), zero when \(x = 1 \) and positive when \(x > 1 \), so \(x = 1 \) is a global minimum. Thus the minimum is at \((1, 2)\), where the value of \(f \) is \(-1\).