Solutions to Prelim 1 5b) Intended and As Written

Problem 5) (25 Points)

Let
\[x = u^2 - v^2 \]
\[y = 2uv. \]

Suppose \(z = f(x, y) \) is a differentiable function.

5a) Express \(\frac{\partial z}{\partial u} \) in terms of \(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, u, \) and \(v. \)

Solution:
\[
\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u} = 2u \frac{\partial z}{\partial x} + 2v \frac{\partial z}{\partial y}.
\]

Similarly, not needed til 5b):
\[
\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v} = (-2v) \frac{\partial z}{\partial x} + 2u \frac{\partial z}{\partial y}.
\]

5b Intended) Show that

This is a moderate difficulty problem similar to homework problem 38 from section 14.6

\[
\frac{1}{4(u^2 + v^2)} \left[\left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2 \right] = \left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2.
\]

5b As Written) Show that

Because of the typo, even though it is doable, this is too hard a problem for people to do without practice. Consequently it was not counted in grading the prelim. Sorry for the mistake!

\[
\frac{1}{4(u^2 + v^2)} \left(\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2} \right) = \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}.
\]

Solution to 5b) Intended: Using the formulas above in the 5a solution (including the \(z \) one)

\[
\frac{1}{4(u^2 + v^2)} \left(\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2} \right) = \frac{1}{4(u^2 + v^2)} \left[\left(2u \frac{\partial z}{\partial x} + 2v \frac{\partial z}{\partial y} \right)^2 + \left(-2v \frac{\partial z}{\partial x} + 2u \frac{\partial z}{\partial y} \right)^2 \right]
\]

Since the cross term \(\frac{\partial z}{\partial x} \frac{\partial z}{\partial y} \) shows up twice on the right hand side with opposite signs, these terms cancel, and the right hand simplifies to

\[
\frac{1}{4(u^2 + v^2)} \left[(4u^2 + 4v^2) \left(\frac{\partial z}{\partial x} \right)^2 + (4u^2 + 4v^2) \left(\frac{\partial z}{\partial y} \right)^2 \right]
\]
which further simplifies to the desired

\[\left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2. \]

Solution to 5b) As Written: The most important additional idea needed here is to realize that the task (in terms of the chain rule) of differentiating (with respect to e.g. \(u \)) an expression like \(\frac{\partial z}{\partial x} \) is just like the task of differentiating \(z(x, y) \). So using the exact same argument as in the solution to 5a, we quickly have

\[
\begin{align*}
\frac{\partial}{\partial u} \left(\frac{\partial z}{\partial x} \right) &= 2u \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) + 2v \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = 2u \frac{\partial^2 z}{\partial x^2} + 2v \frac{\partial^2 z}{\partial x \partial y} \\
\frac{\partial}{\partial v} \left(\frac{\partial z}{\partial x} \right) &= (-2v) \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) + 2u \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = -2v \frac{\partial^2 z}{\partial x^2} + 2u \frac{\partial^2 z}{\partial x \partial y} \\
\frac{\partial}{\partial u} \left(\frac{\partial z}{\partial y} \right) &= 2u \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) + 2v \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right) = 2u \frac{\partial^2 z}{\partial x \partial y} + 2v \frac{\partial^2 z}{\partial y^2} \\
\frac{\partial}{\partial v} \left(\frac{\partial z}{\partial y} \right) &= (-2v) \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) + 2u \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right) = -2v \frac{\partial^2 z}{\partial x \partial y} + 2u \frac{\partial^2 z}{\partial y^2}.
\end{align*}
\]

Then using the solution to 5a) again,

\[
\begin{align*}
\frac{\partial}{\partial u} \left(\frac{\partial z}{\partial u} \right) &= 2 \frac{\partial z}{\partial x} + 2 \frac{\partial z}{\partial y} \\
\frac{\partial}{\partial u} \left(2u \frac{\partial z}{\partial x} + 2v \frac{\partial z}{\partial y} \right) &= 2 \frac{\partial z}{\partial x} + 2u \left(\frac{\partial}{\partial u} \left(\frac{\partial z}{\partial x} \right) \right) + 2v \left(\frac{\partial}{\partial u} \left(\frac{\partial z}{\partial y} \right) \right) \\
&= 2 \frac{\partial z}{\partial x} + 2u \left(\frac{\partial}{\partial u} \left(\frac{\partial z}{\partial x} \right) \right) + 2v \left(\frac{\partial}{\partial u} \left(\frac{\partial z}{\partial y} \right) \right) \\
&= 2 \frac{\partial z}{\partial x} + 2u \left(\frac{\partial^2 z}{\partial x^2} + 2v \frac{\partial^2 z}{\partial x \partial y} \right) + 2v \left(\frac{\partial^2 z}{\partial x \partial y} + 2u \frac{\partial^2 z}{\partial y^2} \right)
\end{align*}
\]

which simplifies to

\[\frac{\partial^2 z}{\partial u^2} = 2 \frac{\partial z}{\partial x} + 4u^2 \frac{\partial^2 z}{\partial x^2} + 8uv \frac{\partial^2 z}{\partial x \partial y} + 4v^2 \frac{\partial^2 z}{\partial y^2}. \]

Similarly one finds (in part because \(\frac{\partial}{\partial v} \left((-2v) \frac{\partial z}{\partial x} + 2u \frac{\partial z}{\partial y} \right) \) has a \(-2 \frac{\partial z}{\partial x}\) term) that

\[\frac{\partial^2 z}{\partial v^2} = -2 \frac{\partial z}{\partial x} + 4v^2 \frac{\partial^2 z}{\partial x^2} - 8uv \frac{\partial^2 z}{\partial x \partial y} + 4u^2 \frac{\partial^2 z}{\partial y^2}. \]

Adding the two expressions quickly gives the desired result.