1. Along the x-axis (where y = 0), \(F(x, y) = \frac{x^2}{y^2} = 1 \)
 except at the origin, where \(F(x, y) \) is undefined.
 So the limit as we approach the origin horizontally is +1.

 Similarly, along the y-axis (where x = 0),
 \[F(x, y) = \frac{-y^2}{y^2} = -1 \]
 and the limit as we approach the origin vertically is -1.
 Since limits, if they exist, must be unique, the limit as we approach the origin does not exist.

 Remark: \(F(0,0) \) undefined does not mean the limit does not exist. It does mean \(F(x, y) \) is not continuous there.

2. a) If \((y-1,-2, zt+3) = \lambda (2, -1, 3) \), looking at the y-components tells us \(\lambda = \frac{1}{3} \).
 Then solving the equations \((y-1)=\frac{1}{3} (z) \) and \(zt+3=\frac{1}{3} (8) \),
 we see that \(t = \frac{1}{6} \) solves both of them,
 so the vectors are parallel exactly when \(t = \frac{1}{6} \).

 b) \[\begin{vmatrix}
 \hat{i} & \hat{j} & \hat{k} \\
 0 & 1 & 1 \\
 1 & 0 & 1 \\
 \end{vmatrix} = \begin{vmatrix}
 \hat{i} & \hat{j} & \hat{k} \\
 0 & -1 & 1 \\
 1 & 0 & 1 \\
 \end{vmatrix} = \begin{vmatrix}
 \hat{i} & \hat{j} \\
 1 & 0 \\
 \end{vmatrix} = \begin{vmatrix}
 \hat{i} & \hat{j} \\
 0 & 1 \\
 \end{vmatrix} = -\hat{i} + \hat{j} - \hat{k} \]
 or \((-1, 1, -1)\).

3. \(f_x = -2x - 3y \)
 \[\begin{bmatrix}
 f_{xx} & f_{xy} \\
 f_{yx} & f_{yy} \\
 \end{bmatrix} = \begin{bmatrix}
 -2 & -5 \\
 -5 & -8 \\
 \end{bmatrix} \]
 Since the determinant \(D \) of this matrix is \((-2)(-8) - (-5)^2 < 0\),
 we have a saddle point at the origin.
First look for critical points:
\[F_x = y = 0 \] so \((0,0)\) is a critical point with \(F(0,0) = 0, \)
\(F_y = x = 0 \) (Since it is on the boundary, we'll have to further consider the point \((0,0)\) anyway.)

Second, look at the vertices:
\[F(0,0) = F(0,1) = F(2,0) = 0 \]

Third, look at each of the three edges using 1-var calculus or LM
(horizontal edge: \((x,0)\) \(0 < x < 2\) \(F(x,0) = 0\) (all points are potential max/min)
vertical edge: \((0,y)\) \(0 < y < 1\) \(F(0,y) = 0\)
slant edge: \(x = 2 - 2y \) \(0 < y < 1\)
\[F(2 - 2y, y) = 2y - 2y^2 = g(y) \]
1-var calculus on \(g(y)\) gives \(g'(y) = 2 - 2y = 0\)
\(y = \frac{1}{2} \Rightarrow x = 2 - 2\left(\frac{1}{2}\right) = 2 - 1 = 1\)

So \((1, \frac{1}{2})\) is also a possible max/min
\[F(1, \frac{1}{2}) = \frac{1}{2} \]

Comparing values we see that the global max is \(\frac{1}{2}\) at \((1, \frac{1}{2})\) and the global min is 0 attained at all points on the two legs of the right triangle.