1. (20 pts) Let \(\mathbf{F} = (y, -x, z) \) be a vector field in 3-space.

 (a) Calculate the line integral \(\int_{C} \mathbf{F} \cdot d\mathbf{s} \), where \(C \) is the curve given by the path
 \(\mathbf{r}(t) = (\cos t, 2\sin t, t) \), for \(0 \leq t \leq \pi \).

 (b) Calculate the line integral \(\int_{C} \mathbf{F} \cdot d\mathbf{s} \), where \(C \) is the line segment from \((1, 1, 1)\) to
 \((1, -1, 2)\).

2. (15 pts) A syzygy in astronomy is a straight line configuration of three heavenly bodies
 (such as a lunar or solar eclipse, involving the earth, moon and sun). Consider three
 points, whose position at time \(-\infty < t < \infty\) is given by the vector functions

 \(\mathbf{r}_1(t) = 4\mathbf{k} + t\mathbf{k}, \quad \mathbf{r}_2(t) = \mathbf{i} + 3\mathbf{j} + 2\mathbf{k} + t\mathbf{j}, \quad \mathbf{r}_3(t) = \mathbf{i} - \mathbf{j} + 2\mathbf{k} + t\mathbf{i} \).

 Find the value of \(t \) when the three points above form a syzygy, namely when they are
 all in a straight line.

3. (15 pts) A fighter plane, which can shoot a laser beam straight ahead, travels along the
 path \(\mathbf{r}(t) = (2 + \cos t, \sin t) \). Show that there is precisely one time \(t \) for \(0 \leq t < 2\pi \) at
 which the pilot can hit a target located at the point \((4, 0)\). Calculate what that time
 \(t \) is.

4. (15 pts) Calculate the limits or show that they do not exist. Remember to justify your
 answers.

 \[\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{x^2 + y^2} \quad \text{(a)} \quad \lim_{(x,y)\to(0,0)} \frac{x^2\sqrt{|y|}}{x^2 + y^2} \quad \text{(b)} \]
5. (20 pts) A new asteroid called Oyd has been discovered. It is an ellipsoid given by the equation \(x^2 + y^2 + 2z^2 = 1 \). Astronauts have just landed at the point \((\frac{1}{2}, \frac{1}{2}, \frac{1}{2})\) and the sun is in the direction \((-1, 4, -1)\).

(a) Calculate the gradient of \(x^2 + y^2 + 2z^2 \) and use it to determine an equation of the tangent plane at the point \((\frac{1}{2}, \frac{1}{2}, \frac{1}{2})\).

(b) Are the astronauts in sunlight or are they in darkness? Justify your answer.

(c) The astronauts want to travel along a curve on the surface of Oyd from \((\frac{1}{2}, \frac{1}{2}, \frac{1}{2})\) such that they stay the same distance from the center of Oyd. Find a parametrization of that curve, starting and ending at \((\frac{1}{2}, \frac{1}{2}, \frac{1}{2})\), which is the intersection of the sphere with center at the origin through \((\frac{1}{2}, \frac{1}{2}, \frac{1}{2})\) and the surface of Oyd. Remember the parametrization includes bounds on the parameters.

6. (15 pts) The figure below shows some level curves of a differentiable function \(f(x, y) \) which are nested circles on each side of the central line, where the value of \(f \) decreases from each level to the next going from the right inner circle to the left inner circle as shown.

(a) Sketch a reasonable graph of the function \(f \) along the line through the points \(A\) and \(B\) in the plane, including maxima, minima and asymptotes.

(b) What is the angle between the gradient of \(f \) at \(A\), and the gradient of \(f \) at \(B\)? Justify your answer.

(c) Consider the directional derivative, \(D_u f(C) \), at the point \(C\) in the direction \(u\). Is \(D_u f(C) \) positive, negative, or zero? Justify your answer.