1) Give examples of each of the following.
 a) A conditionally convergent series.
 b) A continuous function with domain a bounded interval whose range is unbounded.
 c) A bounded set of rational numbers whose least upper bound is not rational.
 d) A series $\sum_{n=1}^{\infty} a_n$ which diverges but for which the sequence $\{a_n\}_{n=1}^{\infty}$ converges. (The notation $\{a_n\}_{n=1}^{\infty}$ just means a_1, a_2, a_3, \ldots)

2) Decide whether and explain briefly why each of the following converges or diverges:
 a) $\sum_{n=1}^{\infty} \frac{\sin n}{2^n}$.
 b) $\sum_{n=1}^{\infty} \frac{3 + \frac{1000 \cos n}{n}}{n^2}$.

3) True or False. Briefly explain your answers. If true, justify; if false, give a counter example.
 a) If $f : \mathbb{R} \to \mathbb{R}$ is uniformly continuous on every closed interval $[-n, n]$ (n a positive integer) then f is uniformly continuous on its entire domain \mathbb{R}.
 b) A function f with domain $[0, 1]$ satisfying $f(0) = -1, f(1) = 1$ must have a root $x_0 \in [0, 1]$. (i.e. a value x_0 so that $f(x_0) = 0$.)
 d) The series $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n + 1}$ can be rearranged to sum to 2.
 e) If $a_n \leq b_n$ for all N and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.

4) Let $f(x) = \frac{1}{1-x}$ with domain the open interval $(0, 1)$.
 a) Explain why $f(x)$ is continuous on this domain.
 b) Let $\epsilon = 1$ in the definition of uniform continuity. Explain carefully why there is no suitable δ for this value of ϵ and consequently f is not uniformly continuous on $(0, 1)$.

5) Explain why
 \[\lim_{n \to \infty} \frac{1000^n}{n!} = 0. \]