1. Decide whether or not the following sets with given binary operations are groups. Justify your answer.
 a. \(G_1 = \mathbb{Z} \) with \(a \ast b = \max(a, b) \).
 b. \(G_2 = \mathbb{Z} \) with \(a \ast b = a - b \).
 c. \(G_3 = \mathbb{R}^+ \) with \(a \ast b = a \cdot b \).
 d. \(G_4 = \mathbb{Q} \) with \(a \ast b = a \cdot b \).

2. Let \(G \) be a group. Show that \(G \) is abelian if and only if \((a \cdot b)^{-1} = a^{-1} \cdot b^{-1} \) for every \(a, b \in G \).

3. Show that if \(G \) is a finite group with an even number of elements, there must be some \(a \in G \) with \(a \neq e \) and \(a^2 = e \).

4. If \(G \) is a group, and \(H \) and \(K \) subgroups, then are \(H \cup K \) and \(H \cap K \) also subgroups?

5. Which of the following functions are homomorphisms? If a function is a homomorphism, please compute its kernel.
 a. \(\phi : (\mathbb{R}^\times, \cdot) \to (\mathbb{C}^\times, \cdot) \) defined by \(\phi(x) = x + ix \).
 b. \(\psi : (M_2(\mathbb{R}), +) \to (\mathbb{R}, +) \) defined by \(\psi \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = a + d \).
 c. \(\pi : (\mathbb{C}^\times, \cdot) \to (\mathbb{R}^\times, \cdot) \) defined by \(\pi(a + bi) = a^2 + b^2 \).
 d. \(\rho : (\mathbb{R}, +) \to (\text{GL}_2(\mathbb{R}), \cdot) \) defined by \(\rho(a) = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \).