Logic and Computation in Finitely-Presentable Infinite Structures

Lecture 7: Automatic Structures

Valentin Goranko and Sasha Rubin

ESSLLI 2006, Malaga, August 2006
Automatic Structures

Definitions
Worked examples
Basic Results
Recall

Interpretation. \(\mathcal{A} \) is FO-interpretable in \(\mathcal{B} \) means \(\mathcal{A} \) is isomorphic to some quotient structure

\[
(\Delta^\mathcal{B}; (\phi_i^\mathcal{B})_i)/\epsilon^\mathcal{B}.
\]

Transfer of FO-decidability. Then if the FO-theory of \(\mathcal{B} \) is decidable, so is the FO-theory of \(\mathcal{A} \).
Summary of definabilities

We have the following translations, implying the decidability of the corresponding theories.

\[
\begin{align*}
\text{WMSO}(\mathbb{N}, s) & \iff \text{automata on finite words} \iff \text{FO}(\mathcal{W}(2)) \\
\text{WMSO}(\{0, 1\}^*, s_0, s_1) & \iff \text{automata on finite trees} \iff \text{FO}(\mathcal{T}(2)) \\
\text{MSO}(\mathbb{N}, s) & \iff \text{automata on infinite words} \iff \text{FO}(\mathcal{W}^\omega(2)) \\
\text{MSO}(\{0, 1\}^*, s_0, s_1) & \iff \text{automata on infinite trees} \iff \text{FO}(\mathcal{T}^\omega(2))
\end{align*}
\]

For each notion of automaton \(\diamond \in \{\text{word, } \omega\text{-word, } \text{tree, } \omega\text{-tree}\}\), write \(\mathcal{U}_\diamond\) for the corresponding FO structure.
Automatic structures

Definition. A relational structure \mathcal{A} is called \Diamond-automatic if it is FO-interpretable in \mathcal{U}_\Diamond.

Then, every \Diamond-automatic structure has decidable FO-theory.

Notation

- W-Aut: word-automatic structures
- T-Aut: tree-automatic structures
- W^ω-Aut: ω-word automatic structures
- T^ω-Aut: ω-tree automatic structures
Automatic presentation

Definition. If \mathcal{A} is \diamond-automatic via

$$(\Delta^\mathcal{U}_\diamond; (\phi^\mathcal{U}_i)_i)/\epsilon^\mathcal{U}_\diamond,$$

then the structure

$$(\Delta^\mathcal{U}_\diamond; (\phi^\mathcal{U}_i)_i, \epsilon^\mathcal{U}_\diamond)$$

is an \diamond-automat**ic presentation** (of \mathcal{A}).

Note in particular, an automatic presentation is FO-definable in \mathcal{U}_\diamond.

Since the FO-definable relations in \mathcal{U}_\diamond are exactly the \diamond-regular ones, an automatic presentation can be seen as a collection of *automata* describing \mathcal{A} (up to isomorphism).
\[(\mathbb{N}; +) \text{ is in } W\text{-Aut}\]

- Code \(n \in \mathbb{N}\) by its base 2 representation (least significant digit first).
- \(\mathbb{N}\) corresponds to the regular language \(2^*1\).
- The atomic relation \(+\) corresponds to an regular relation \(\text{add}\) over this coding.
- So \((2^*1; \text{add})\) is a word-automatic presentation of \((\mathbb{N}; +)\).
We have seen that the structure with domain 2^* and binary relation $x \leq y$ if $[x \sqcap y]_0 \triangleleft_{\text{prefix}} x$ or $[x \sqcap y]_1 \triangleleft_{\text{prefix}} y$ is isomorphic to the rational ordering.
Prefix recognisable graphs are in W-Aut

Recall: a graph $(G; E)$ is prefix recognisable if $G \subseteq 2^*$ is regular, and E is a finite union of relations of the form

$$U(V \times W),$$

for $U, V, W \subseteq 2^*$ regular.

Exercise. [Blumensath 2002] More generally, every tree interpretable structure is in W-Aut.

What about graphs at higher levels of the pushdown hierarchy?
\(\mathbb{R}[0, 1]; + \mod 1 \) is in \(W^\omega - \text{Aut} \)

- Code \(r \in \mathbb{R}[0, 1] \) by its base 2 representation(s) (least significant digit first).
- \(\mathbb{R}[0, 1] \) corresponds to the regular language \(2^\omega \).
- The atomic relation \(+ \mod 1 \) corresponds to a regular relation \(\text{realadd} \) over this coding.
- Equality = corresponds to a regular relation \(\approx \) over this coding; namely \(((1), (0), (1), (0)) \ast (1) (0) ^\omega \).
- So \(\{0, 1\}^\omega; \text{realadd}, \approx \) is an \(\omega \)-word automatic presentation of \(\mathbb{R}[0, 1]; + \mod 1 \).

Extend this idea to \(\mathbb{R}, + \).
\((\mathbb{N}; \times)\) is in \(T\text{-Aut}\)

A tree \(T_n\) codes the unique factorisation of \(n\) into prime powers
\[n = p_1^{n_1} \times p_2^{n_2} \times \cdots. \]

- Tree \(T_n\) has domain \(0^*1^*\), and the sequence of labels on the branch \(0^j1^*\) codes \(n_j\) in binary.
- Multiplication then corresponds to addition on the branches.
- This can be done with a tree automaton.

This \(T^\omega\text{-Aut}\) presentation can easily be turned into a \(T\text{-Aut}\) presentation.
Universal structures

Definition. A structure \mathcal{U} is *universal* for the class $\Diamond-\text{Aut}$, if

- \mathcal{U} is in $\Diamond-\text{Aut}$, and
- every structure in $\Diamond-\text{Aut}$ is FO-interpretable in \mathcal{U}.

By definition the structure \mathcal{U}_\Diamond is universal for $\Diamond-\text{Aut}$.

There are other (non-isomorphic) universal structures. Define the numerical predicate $x \mid_2 y$ if $y = xk$ and $x = 2^n$ for some $n, k \in \mathbb{Z}$.

Theorem.

- $(\mathbb{N}; +, \mid_2)$ is universal for $\mathbb{W}-\text{Aut}$.
- $(\mathbb{R}; +, \mid_2)$ is universal for $\mathbb{W}^\omega-\text{Aut}$.

Are there natural numerical structures that are universal for $T-\text{Aut}$, $T^\omega-\text{Aut}$?
1-dimensional interpretations suffice

Proposition. If \mathcal{A} is FO-interpretable in \mathcal{U}_\Diamond, then it is 1-dimensionally FO-interpretable in \mathcal{U}_\Diamond.

Sketch. Given an r-dimensional interpretation, consider a tuple (a_1, \cdots, a_r) from \mathcal{U}_\Diamond representing an element of \mathcal{A}. Then $\otimes(\bar{a})$ is a single \Diamond over alphabet $\Gamma = (2 \cup \{\square\})^r$ (the padding symbol \square is required in the cases of finite words and trees).

This is the co-ordinate map of a 1-dimensional FO-interpretation of \mathcal{A} in $\mathcal{U}_\Diamond(\Gamma)$ ($:= \mathcal{U}_\Diamond$ on alphabet Γ instead of 2).

Finally, $\mathcal{U}(\Gamma)$ is 1-dimensionally FO-interpretable in $\mathcal{U}(2)$.
EXERCISE. Show that in the word case, the interpretation can be taken 1-dimensional \textit{and injective}. The same holds for the tree case.

PROBLEM. Do injective presentations suffice in the \(\omega\)-word and \(\omega\)-tree cases?
Corollary. A structure is in ♦-Aut if and only if it is interpretable as follows:

\[
\diamond = \begin{cases}
\text{word} & \text{finite-set interpretable in } (\mathbb{N}, s). \\
\omega\text{-word} & \text{set interpretable in } (\mathbb{N}, s). \\
\text{tree} & \text{finite-set interpretable in } (\{0, 1\}^*, s_0, s_1). \\
\omega\text{-tree} & \text{set interpretable in } (\{0, 1\}^*, s_0, s_1).
\end{cases}
\]