Homework set II

Question 1. Is there a Rényi type theorem for weak-mixing systems? (Recall: Rényi theorem says that T is strong-mixing iff $\mu(T^{-n}A \cap A) \to \mu(A)^2$, $\forall A \in \mathcal{B}$.)

Question 2. Give an alternative proof of the following: if T has no non-constant measurable eigenfunction, then T is weak-mixing.

(Hint: show that if T has no non-constant measurable eigenfunction, then

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \left| \langle U_{n}f, f \rangle \right|^{2} \to 0.$$)

Question 3. Let R_{α} be the circle rotation by an irrational number α. (We saw that it is uniquely ergodic.)

1. Show equidistribution property:

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \chi_{[a,b]}((R_{\alpha})^{n}(t)) \to (b-a).$$

2. Consider the first digit of 2^{n}, i.e. 1, 2, 4, 8, 1, 3, 6, ···. What is the density of the first digit being k ($0 \leq k \leq 9$)?

Question 4. Let X be a compact metrizable group.

1. Show that there is a bi-invariant metric on X defining the topology on X.

2. Show that $d_{Y}(x) = \min\{d(x, y) : y \in Y\}$ is a non-constant function on X which is constant on each coset of Y.

(Reference: Einsiedler-Ward, Chapter 1, 2, 4, 7)