Math 612 homework assignment 1 due 2007-02-01 at 3 pm

1. Problem 10.6 from the book. The question, In what other discs can this be done? means: state and prove similar results for the disc $D(z_0, r)$ instead of $D(1, 1)$. For what values of z_0 and r do your results hold?

2. Show that an open subset Ω of \mathbb{R}^n is connected if and only if it is path-connected (in the sense that for every $a, b \in \Omega$ there is a piecewise C^1 path $\gamma: [0, 1] \to \Omega$ with $\gamma(0) = a$ and $\gamma(1) = b$).

3. Let Ω_1 and Ω_2 be open subsets of \mathbb{C} and let $f: \Omega_1 \to \Omega_2$ and $g: \Omega_2 \to \mathbb{C}$ be real differentiable functions. Let $h = g \circ f$, i.e. $h(z) = g(f(z))$. Derive from the multivariable chain rule that

$$\frac{\partial h}{\partial z} = \frac{\partial g}{\partial w} \frac{\partial f}{\partial z} + \frac{\partial g}{\partial w} \frac{\partial f}{\partial z},$$

$$\frac{\partial h}{\partial \bar{z}} = \frac{\partial g}{\partial w} \frac{\partial f}{\partial \bar{z}} + \frac{\partial g}{\partial w} \frac{\partial f}{\partial \bar{z}}.$$

4. Polar coordinates (r, θ) on $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ are defined by $x = r \cos \theta$, $y = r \sin \theta$, or equivalently $z = re^{i\theta}$.

 (i) Show that in polar coordinates the Cauchy-Riemann equations take the form

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{1}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial v}{\partial r}.$$

 (ii) Let Ω_0 be the region $r > 0$ and $-\pi < \theta < \pi$. Define $\log: \Omega_0 \to \mathbb{C}$ by $\log z = \log r + i\theta$. Show that \log is holomorphic. Find a region Ω_1 such that $\exp: \Omega_1 \to \Omega_0$ is bijective and \log is its inverse.

5. Define $f: \mathbb{C} \to \mathbb{C}$ by $f(x + iy) = \sqrt{|xy|}$.

 (i) Show that f satisfies the Cauchy-Riemann equations at the origin, but is not holomorphic at the origin.

 (ii) Explain why this does not contradict the theorem that f is holomorphic at a if and only if it is real differentiable at a and $\frac{\partial f}{\partial \bar{z}}(a) = 0$.

6. Let f be holomorphic in a region Ω. Assume that one of the following assumptions holds,

 (i) $\text{Re } f$ is constant, or
 (ii) $\text{Im } f$ is constant, or
 (iii) $|f|$ is constant,

and conclude that f is constant.