1. Let \(f(x) = (\pi - |x|)^2 \) for \(-\pi \leq x \leq \pi\). Prove that
\[
f(x) = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4}{n^2} \cos nx.
\]
In what norm does the series converge? Now use Parseval to evaluate \(\sum_{n \geq 1} \frac{1}{n^4} \).

2. A subset \(A \) of a real vector space \(E \) is convex if for every \(x \) and \(y \) in \(A \) the line segment joining \(x \) to \(y \) is contained in \(A \), i.e. \(tx + (1-t)y \in A \) for \(0 \leq t \leq 1 \). Let \(\| \cdot \| \) be a norm on \(E \).
 (a) Suppose that \(A \) is convex. Prove that \(\bar{A} \), the closure of \(A \), is convex.
 (b) Let \(A = B_\varepsilon(x) \) be an open ball in \(E \). Show that \(A \) is convex.

3. Recall that for \(p \geq 1 \) the \(L^p \)-norm of \(f \in C([0, 1], R) \) is defined by
\[
\|f\|_p = \left(\int_0^1 |f(x)|^p \, dx \right)^{1/p}.
\]
For \(n \geq 1 \) define \(f_n \) by \(f_n(x) = 1 - nx \) if \(0 \leq x \leq 1/n \) and \(f_n(x) = 0 \) if \(1/n \leq x \leq 1 \). Show that \(\{f_n\}_{n \geq 1} \) converges to the zero function in the \(L^p \)-norm. Does \(f_n(x) \to 0 \) pointwise?